Endpoint estimates for commutators of singular integrals related to Schrödinger operators

Luong Dang Ky

Abstract. Let $L = -\Delta + V$ be a Schrödinger operator on \mathbb{R}^d, $d \geq 3$, where V is a nonnegative potential, $V \neq 0$, and belongs to the reverse H"older class $RH_{d/2}$. In this paper, we study the commutators $[b, T]$ for T in a class \mathcal{K}_L of sublinear operators containing the fundamental operators in harmonic analysis related to L. More precisely, when $T \in \mathcal{K}_L$, we prove that there exists a bounded subbilinear operator $\mathfrak{R} = \mathfrak{R}_T : H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \to L^1(\mathbb{R}^d)$ such that

$$(\star) \quad |T(\mathfrak{G}(f, b)) - \mathfrak{R}(f, b)| \leq \|[b, T](f)\| \leq \mathfrak{R}(f, b) + |T(\mathfrak{G}(f, b))|,$$

where \mathfrak{G} is a bounded bilinear operator from $H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$ which does not depend on T. The subbilinear decomposition (\star) allows us to explain why commutators with the fundamental operators are of weak type (H^1_L, L^1), and when a commutator $[b, T]$ is of strong type (H^1_L, L^1).

Also, we discuss the H^1_L-estimates for commutators of the Riesz transforms associated with the Schrödinger operator L.

1. Introduction

Given a function b locally integrable on \mathbb{R}^d, and a (classical) Calderón–Zygmund operator T, we consider the linear commutator $[b, T]$ defined for smooth, compactly supported functions f by

$$[b, T](f) = bT(f) - T(bf).$$

A classical result of Coifman, Rochberg and Weiss (see [12]), states that the commutator $[b, T]$ is continuous on $L^p(\mathbb{R}^d)$ for $1 < p < \infty$, when $b \in \text{BMO}(\mathbb{R}^d)$. Unlike the theory of (classical) Calderón–Zygmund operators, the proof of this result does not rely on a weak type $(1, 1)$ estimate for $[b, T]$. Instead, an endpoint theory was

Mathematics Subject Classification (2010): Primary 42B35, 35J10; Secondary 42B20.
Keywords: Schrödinger operators, commutators, Hardy spaces, Calderón–Zygmund operators, Riesz transforms, BMO, atoms.
provided for this operator, see for example [37], [38]. A general overview about these facts can be found for instance in [28].

Let \(L = -\Delta + V \) be a Schrödinger operator on \(\mathbb{R}^d \), \(d \geq 3 \), where \(V \) is a nonnegative potential, \(V \neq 0 \), and belongs to the reverse Hölder class \(\text{RH}_{d/2} \). We recall that a nonnegative locally integrable function \(V \) belongs to the reverse Hölder class \(\text{RH}_q \), \(1 < q < \infty \), if there exists \(C > 0 \) such that

\[
\left(\frac{1}{|B|} \int_B (V(x))^q \, dx \right)^{1/q} \leq C \left(\frac{1}{|B|} \int_B V(x) \, dx \right)
\]

holds for every balls \(B \) in \(\mathbb{R}^d \). In [16], Dziubański and Zienkiewicz introduced the Hardy space \(H^1_\Delta(\mathbb{R}^d) \) as the set of functions \(f \in L^1(\mathbb{R}^d) \) such that \(\|f\|_{H^1_\Delta} := \|\mathcal{M}_L f\|_{L^1} < \infty \), where \(\mathcal{M}_L f(x) := \sup_{t>0} |e^{-tL} f(x)| \). There, they characterized \(H^1_\Delta(\mathbb{R}^d) \) in terms of atomic decomposition and in terms of the Riesz transforms associated with \(L \), \(R_j = \partial_{\gamma_j} L^{-1/2} \), \(j = 1, \ldots, d \). In the recent years, there is an increasing interest on the study of commutators of singular integral operators related to Schrödinger operators, see for example [7], [10], [21], [32], [43], [44], [45].

In the present paper, we consider commutators of singular integral operators related to the Schrödinger operator \(L \). Here \(T \) is in the class \(\mathcal{K}_L \) of all sublinear operators \(T \), bounded from \(H^1_\Delta(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \) and satisfying for any \(b \in \text{BMO}(\mathbb{R}^d) \) and \(a \) a generalized atom related to the ball \(B \) (see Definition 2.3), we have

\[
\| (b - b_B) Ta \|_{L^1} \leq C \|b\|_{\text{BMO}},
\]

where \(b_B \) denotes the average of \(b \) on \(B \) and \(C > 0 \) is a constant independent of \(b \) and \(a \). The class \(\mathcal{K}_L \) contains the fundamental operators (we refer the reader to [28] for the classical case \(L = -\Delta \)) related to the Schrödinger operator \(L \): the Riesz transforms \(R_j \), \(L \)-Calderón–Zygmund operators (so-called Schrödinger–Calderón–Zygmund operators), \(L \)-maximal operators, \(L \)-square operators, etc. (see Section 4). It should be pointed out that, by the work of Shen [39] and Definition 2.9 (see Remark 2.10), one only can conclude that the Riesz transforms \(R_j \) are Schrödinger–Calderón–Zygmund operators whenever \(V \in \text{RH}_d \). In this work, we consider all potentials \(V \) which belong to the reverse Hölder class \(\text{RH}_{d/2} \).

Although Schrödinger–Calderón–Zygmund operators map \(H^1_\Delta(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \) (see Proposition 4.1), it was observed in [32], [48] that, when \(b \in \text{BMO}(\mathbb{R}^d) \), the commutators \([b, R_j]\) do not map, in general, \(H^1_\Delta(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \). In the classical setting, it was derived by M. Paluszyński [35] that the commutator of the Hilbert transform \([b, H]\) does not map, in general, \(H^1(\mathbb{R}) \) into \(L^1(\mathbb{R}) \). After, C. Pérez showed in [37] that if \(H^1(\mathbb{R}^d) \) is replaced by a suitable atomic subspace \(H^1_\Delta(\mathbb{R}^d) \) then commutators of the classical Calderón–Zygmund operators are continuous from \(H^1_\Delta(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \). Recall that (see [37]) a function \(a \) is a \(b \)-atom if

\[
\text{i) } \text{supp } a \subset Q \text{ for some cube } Q, \quad \text{ii) } \|a\|_{L^\infty} \leq |Q|^{-1}, \quad \text{iii) } \int_{\mathbb{R}^d} a(x) \, dx = \int_{\mathbb{R}^d} a(x) b(x) \, dx = 0.
\]
The space $H^1_L(\mathbb{R}^d)$ consists of the subspace of $L^1(\mathbb{R}^d)$ of functions f which can be written as $f = \sum_{j=1}^{\infty} \lambda_j a_j$ where a_j are b-atoms, and λ_j are complex numbers with $\sum_{j=1}^{\infty} |\lambda_j| < \infty$. Thus, when $b \in \text{BMO}(\mathbb{R}^d)$, it is natural to ask for subspaces of $H^1_L(\mathbb{R}^d)$ such that all commutators of Schrödinger–Calderón–Zygmund operators and the Riesz transforms map continuously these spaces into $L^1(\mathbb{R}^d)$.

In this paper, we are interested in the following two questions.

Question 1. For $b \in \text{BMO}(\mathbb{R}^d)$. Find the largest subspace $\mathcal{H}^1_{L,b}(\mathbb{R}^d)$ of $H^1_L(\mathbb{R}^d)$ such that all commutators of Schrödinger–Calderón–Zygmund operators and the Riesz transforms are bounded from $\mathcal{H}^1_{L,b}(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$.

Question 2. Characterize functions b in $\text{BMO}(\mathbb{R}^d)$ so that $\mathcal{H}^1_{L,b}(\mathbb{R}^d) \equiv H^1_L(\mathbb{R}^d)$.

Let X be a Banach space. We say that an operator $T: X \rightarrow L^1(\mathbb{R}^d)$ is a sublinear operator if for all $f, g \in X$ and $\alpha, \beta \in \mathbb{C}$, we have
\[
|T(\alpha f + \beta g)(x)| \leq |\alpha| |Tf(x)| + |\beta| |Tg(x)|.
\]

Obviously, a linear operator $T: X \rightarrow L^1(\mathbb{R}^d)$ is a sublinear operator. We also say that an operator $\mathcal{T}: H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \rightarrow L^1(\mathbb{R}^d)$ is a subbilinear operator if for every $(f, g) \in H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)$, the operators $\mathcal{T}(\cdot, g): \text{BMO}(\mathbb{R}^d) \rightarrow L^1(\mathbb{R}^d)$ and $\mathcal{T}(f, \cdot): H^1_L(\mathbb{R}^d) \rightarrow L^1(\mathbb{R}^d)$ are sublinear operators.

To answer Questions 1 and 2, we study commutators of sublinear operators in K_L. More precisely, when $T \in K_L$ is a sublinear operator, we prove (see Theorem 3.1) that there exists a bounded subbilinear operator $\mathfrak{R} = \mathfrak{R}_T: H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \rightarrow L^1(\mathbb{R}^d)$ so that for all $(f, b) \in H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)$,
\[
T(\mathfrak{S}(f, b)) - \mathfrak{R}(f, b) \leq \|b\|_{\text{BMO}} \|f\|_{H^1_L} + \|T(\mathfrak{S}(f, b))\|,
\]

where \mathfrak{S} is a bounded bilinear operator from $H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$ which does not depend on T (see Proposition 5.6). When $T \in K_L$ is a linear operator, we prove (see Theorem 3.4) that there exists a bounded bilinear operator $\mathfrak{R} = \mathfrak{R}_T: H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \rightarrow L^1(\mathbb{R}^d)$ such that for all $(f, b) \in H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)$,
\[
[b, T](f) = \mathfrak{R}(f, b) + T(\mathfrak{S}(f, b)) - \mathfrak{R}(f, b).
\]

The decompositions (1.1) and (1.2) give a general overview and explains why almost commutators of the fundamental operators are of weak type (H^1_L, L^1), and when a commutator $[b, T]$ is of strong type (H^1_L, L^1).

Let b be a function in $\text{BMO}(\mathbb{R}^d)$. We assume that b non-constant, otherwise $[b, T] = 0$. We define the space $\mathcal{H}^1_{L,b}(\mathbb{R}^d)$ as the set of all f in $H^1_L(\mathbb{R}^d)$ such that $[b, \mathcal{M}_L](f)(x) = \mathcal{M}_L(b(x) f(\cdot) - b(\cdot) f(\cdot))(x)$ belongs to $L^1(\mathbb{R}^d)$, and the norm on $\mathcal{H}^1_{L,b}(\mathbb{R}^d)$ is defined by $\|f\|_{\mathcal{H}^1_{L,b}} = \|f\|_{H^1_L} \|b\|_{\text{BMO}} + \|[b, \mathcal{M}_L](f)\|_{L^1(\mathbb{R}^d)}$. Then, using the subbilinear decomposition (1.1), we prove that all commutators of Schrödinger–Calderón–Zygmund operators and the Riesz transforms are bounded from $\mathcal{H}^1_{L,b}(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$. Furthermore, $\mathcal{H}^1_{L,b}(\mathbb{R}^d)$ is the largest space having
from the subbilinear decomposition (1.1), we find subspaces of this property and $H^1_{L,b}(\mathbb{R}^d) = H^1_L(\mathbb{R}^d)$ if and only if $b \in \text{BMO}_L^\log(\mathbb{R}^d)$ (see Theorem 7.5), that is,

$$\|b\|_{\text{BMO}_L^\log} = \sup_{B(x,r)} \left(\log \left(e + \frac{\rho(x)}{r} \right) \frac{1}{|B(x,r)|} \int_{B(x,r)} |b(y) - b_{B(x,r)}| \, dy \right) < \infty,$$

where $\rho(x) = \sup\{ r > 0 : \frac{1}{r^d} \int_{B(x,r)} V(y) \, dy \leq 1 \}$. This space $\text{BMO}_L^\log(\mathbb{R}^d)$ arises naturally in the characterization of pointwise multipliers for $\text{BMO}_L(\mathbb{R}^d)$, the dual space of $H^1_L(\mathbb{R}^d)$, see [3], [33].

The above answers Questions 1 and 2. As another interesting application of the subbilinear decomposition (1.1), we find subspaces of $H^1_L(\mathbb{R}^d)$ which do not depend on $b \in \text{BMO}(\mathbb{R}^d)$ and $T \in K_L$, such that $[b, T]$ maps continuously these spaces into $L^1(\mathbb{R}^d)$ (see Section 7). For instance, when $L = -\Delta + 1$, Theorem 7.10 state that for every $b \in \text{BMO}(\mathbb{R}^d)$ and $T \in K_L$, the commutator $[b, T]$ is bounded from $H^1_{L,1}(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$. Here $H^1_{L,1}(\mathbb{R}^d)$ is the (inhomogeneous) Hardy–Sobolev space considered by Hofmann, Mayboroda and McIntosh in [23], defined as the set of functions f in $H^1_L(\mathbb{R}^d)$ such that $\partial_x f, \ldots, \partial_{x^d} f \in H^1_L(\mathbb{R}^d)$ with the norm

$$\|f\|_{H^1_{L,1}} = \|f\|_{H^1_L} + \sum_{j=1}^d \|\partial_x f\|_{H^1_L}.$$

Recently, similarly to the classical result of Coifman–Rochberg–Weiss, Gou et al. proved in [21] that the commutators $[b, R^*_j]$ are bounded on $L^p(\mathbb{R}^d)$ whenever $b \in \text{BMO}(\mathbb{R}^d)$ and $1 < p < \frac{dd}{d-2} q$ where $V \in RH_q$ for some $d/2 < q < d$. Later, in [7], Bongioanni et al. generalized this result by showing that the space $\text{BMO}(\mathbb{R}^d)$ can be replaced by a larger space $\text{BMO}_{L,\infty}(\mathbb{R}^d) = \cup_{\theta \geq 0} \text{BMO}_{L,\theta}(\mathbb{R}^d)$, where $\text{BMO}_{L,\theta}(\mathbb{R}^d)$ is the space of locally integrable functions f satisfying

$$\|f\|_{\text{BMO}_{L,\theta}} = \sup_{B(x,r)} \left(\frac{1}{(1 + \frac{r}{\rho(x)})^\theta} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y) - f_{B(x,r)}| \, dy \right) < \infty.$$

Let R^*_j be the adjoint operators of R_j. Bongioanni et al. established in [6] that the operators R^*_j are bounded on $\text{BMO}_{L}(\mathbb{R}^d)$, and thus from $L^\infty(\mathbb{R}^d)$ into $\text{BMO}_{L}(\mathbb{R}^d)$. Therefore, it is natural to ask for a class of functions b so that the commutators $[b, R^*_j]$ map continuously $L^\infty(\mathbb{R}^d)$ into $\text{BMO}_{L}(\mathbb{R}^d)$. In [7], the authors found such a class of functions. More precisely, they proved in [7] that the commutators $[b, R^*_j]$ map continuously $L^\infty(\mathbb{R}^d)$ into $\text{BMO}_{L}(\mathbb{R}^d)$ whenever $b \in \text{BMO}_{L,\infty}^\log(\mathbb{R}^d) = \cup_{\theta \geq 0} \text{BMO}_{L,\theta}^\log(\mathbb{R}^d)$. Here $\text{BMO}_{L,\theta}^\log(\mathbb{R}^d)$ is the space of functions $f \in L^1_{\text{loc}}(\mathbb{R}^d)$ such that

$$\|f\|_{\text{BMO}_{L,\theta}^\log} = \sup_{B(x,r)} \left(\frac{\log \left(e + \frac{\rho(x)}{r} \right)}{(1 + \frac{r}{\rho(x)})^\theta} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y) - f_{B(x,r)}| \, dy \right) < \infty.$$

A natural question arises: can one replace the space $L^\infty(\mathbb{R}^d)$ by $\text{BMO}_{L}(\mathbb{R}^d)$?
Commutators of singular integral operators

1337

independent of the main parameters, but may change from line to line. The symbol $Riesz transforms (Theorem 3.5 and Theorem 3.6). In Section 4, we give some examples of commutators of Schrödinger–Calderón–Zygmund operators and the commutators of the position theorems (Theorem 3.1 and Theorem 3.4), Hardy estimates for commutators of these spaces into $ear decomposition (1.2). Second, we characterize functions two decomposition theorems: the subbilinear decomposition (1.1) and the bilinear decomposition (1.2). Second, we characterize functions.

Let us emphasize the three main purposes of this paper. First, we prove the key lemmas. Finally, in Section 7, we give some examples of fundamental operators related to L which are in the class \mathcal{K}_L. Section 5 is devoted to the proofs of the main theorems. Section 6 is devoted to the proofs of the key lemmas. Finally, in Section 7, we give some examples of subspaces of $H^1_L(\mathbb{R}^d)$ such that all commutators $[b, T]$, $T \in \mathcal{K}_L$, map continuously these spaces into $L^1(\mathbb{R}^d)$.

This paper is organized as follows. In Section 2, we present some notations and preliminaries about Hardy spaces, new atoms, BMO type spaces and Schrödinger–Calderón–Zygmund operators. In Section 3, we state the main results: two decomposition theorems (Theorem 3.1 and Theorem 3.4), Hardy estimates for commutators of Schrödinger–Calderón–Zygmund operators and the commutators of the Riesz transforms (Theorem 3.5 and Theorem 3.6). In Section 4, we give some examples of fundamental operators related to L which are in the class \mathcal{K}_L. Section 5 is devoted to the proofs of the main theorems. Section 6 is devoted to the proofs of the key lemmas. Finally, in Section 7, we give some examples of subspaces of $H^1_L(\mathbb{R}^d)$ such that all commutators $[b, T]$, $T \in \mathcal{K}_L$, map continuously these spaces into $L^1(\mathbb{R}^d)$.

Throughout the whole paper, C denotes a positive geometric constant which is independent of the main parameters, but may change from line to line. The symbol $f \approx g$ means that f is equivalent to g (i.e. $C^{-1} f \leq g \leq C f$). In \mathbb{R}^d, we denote by $B = B(x, r)$ an open ball with center x and radius $r > 0$, and $tB(x, r) := B(x, tr)$ whenever $t > 0$. For any measurable set E, we denote by χ_E its characteristic function, by $|E|$ its Lebesgue measure, and by E^c the set $\mathbb{R}^d \setminus E$.

Question 3. Are the commutators $[b, R_j]$, $j = 1, \ldots, d$, bounded on $BMO_L(\mathbb{R}^d)$ whenever $b \in BMO_{L,\infty}^{\log}(\mathbb{R}^d)$?

Motivated by this question, we study the H^1_L-estimates for commutators of the Riesz transforms. More precisely, given $b \in BMO_{L,\infty}(\mathbb{R}^d)$, we prove that the commutators $[b, R_j]$ are bounded on $H^1_L(\mathbb{R}^d)$ if and only if b belongs to $BMO_{L,\infty}^{\log}(\mathbb{R}^d)$ (see Theorem 3.6). Furthermore, if $b \in BMO_{L,\infty}^{\log}(\mathbb{R}^d)$ for some $\theta \geq 0$, then there exists a constant $C > 1$, independent of b, such that

$$C^{-1} \|b\|_{BMO_{L,\infty}^{\log}} \leq \|b\|_{BMO_L,\infty} + \sum_{j=1}^d \| [b, R_j] \|_{H^1_L \rightarrow H^1_L} \leq C \|b\|_{BMO_{L,\infty}^{\log}}.$$

As a consequence, we get the positive answer for Question 3.

Now, an open question is the following:

Open question. Find the set of all functions b such that the commutators $[b, R_j]$, $j = 1, \ldots, d$, are bounded on $H^1_L(\mathbb{R}^d)$.

Let us emphasize the three main purposes of this paper. First, we prove the two decomposition theorems: the subbilinear decomposition (1.1) and the bilinear decomposition (1.2). Second, we characterize functions b in $BMO_{L,\infty}(\mathbb{R}^d)$ so that the commutators of the Riesz transforms are bounded on $H^1_L(\mathbb{R}^d)$, which answers Question 3. Finally, we find the largest subspace $H^1_{L,b}(\mathbb{R}^d)$ of $H^1_L(\mathbb{R}^d)$ such that all commutators of Schrödinger–Calderón–Zygmund operators and the Riesz transforms are bounded from $H^1_{L,b}(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$. Besides, we find also the characterization of functions $b \in BMO(\mathbb{R}^d)$ so that $H^1_{L,b}(\mathbb{R}^d) \equiv H^1_L(\mathbb{R}^d)$, which answer Questions 1 and 2. Especially, we show that there exist subspaces of $H^1_L(\mathbb{R}^d)$ which do not depend on $b \in BMO(\mathbb{R}^d)$ and $T \in \mathcal{K}_L$, such that $[b, T]$ maps continuously these spaces into $L^1(\mathbb{R}^d)$, see Section 7.
Acknowledgements. The author is deeply indebted to Aline Bonami, Sandrine Grellier and Frédéric Bernicot for many helpful suggestions and discussions. He also thanks Sandrine Grellier for her carefully reading and revision of the manuscript. He would like to thank the referee for helpful suggestions and comments. Finally, he would like to thank the Vietnam Institute for Advanced Study in Mathematics for financial support and hospitality.

2. Some preliminaries and notations

In this paper, we consider the Schrödinger differential operator

$$L = -\Delta + V$$

on \mathbb{R}^d, $d \geq 3$, where V is a nonnegative potential, $V \neq 0$. As in the works of Dziubański et al [15], [16], we always assume that V belongs to the reverse Hölder class $RH_{d/2}$. Recall that a nonnegative locally integrable function V is said to belong to a reverse Hölder class $RH_{q,1} < q < \infty$, if there exists $C > 0$ such that

$$\left(\frac{1}{|B|} \int_B (V(x))^q \, dx \right)^{1/q} \leq \frac{C}{|B|} \int_B V(x) \, dx$$

holds for every balls B in \mathbb{R}^d. By Hölder inequality, $RH_{q_1} \subset RH_{q_2}$ if $q_1 \geq q_2 > 1$. For $q > 1$, it is well-known that $V \in RH_q$ implies $V \in RH_{q+\varepsilon}$ for some $\varepsilon > 0$ (see [19]). Moreover, $V(y) \, dy$ is a doubling measure, namely for any ball $B(x,r)$ we have

$$\int_{B(x,2r)} V(y) \, dy \leq C_0 \int_{B(x,r)} V(y) \, dy.$$

Let $\{T_t\}_{t>0}$ be the semigroup generated by L and $T_t(x,y)$ be their kernels. Namely,

$$T_t f(x) = e^{-tL}f(x) = \int_{\mathbb{R}^d} T_t(x,y)f(y) \, dy, \quad f \in L^2(\mathbb{R}^d), \quad t > 0.$$

We say that a function $f \in L^2(\mathbb{R}^d)$ belongs to the space $H^1_L(\mathbb{R}^d)$ if

$$\|f\|_{H^1_L} := \|\mathcal{M}_L f\|_{L^1} < \infty,$$

where $\mathcal{M}_L f(x) := \sup_{t>0} |T_t f(x)|$ for all $x \in \mathbb{R}^d$. The space $H^1_L(\mathbb{R}^d)$ is then defined as the completion of $H^1_L(\mathbb{R}^d)$ with respect to this norm.

In [15] it was shown that the dual of $H^1_L(\mathbb{R}^d)$ can be identified with the space $\text{BMO}_L(\mathbb{R}^d)$ which consists of all functions $f \in \text{BMO}(\mathbb{R}^d)$ with

$$\|f\|_{\text{BMO}_L} := \|f\|_{\text{BMO}} + \sup_{\rho(x) \leq r} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| \, dy < \infty,$$
where ρ is the auxiliary function defined as in [39], that is,
\begin{equation}
\rho(x) = \sup \left\{ r > 0 : \frac{1}{r^{d-2}} \int_{B(x,r)} V(y) \, dy \leq 1 \right\},
\end{equation}
x ∈ \mathbb{R}^d. Clearly, 0 < \rho(x) < ∞ for all x ∈ \mathbb{R}^d, and thus \mathbb{R}^d = \bigcup_{n \in \mathbb{Z}} B_n, where the sets B_n are defined by
\begin{equation}
B_n = \left\{ x ∈ \mathbb{R}^d : 2^{-(n+1)/2} < \rho(x) \leq 2^{-n/2} \right\}.
\end{equation}

The following proposition plays an important role in our study.

Proposition 2.1 (see [39], Lemma 1.4). There exist two constants κ > 1 and k_0 ≥ 1 such that for all x, y ∈ \mathbb{R}^d,
\[\kappa^{-1} \rho(x) \left(1 + \frac{|x-y|}{\rho(x)}\right)^{-k_0} \leq \rho(y) \leq \kappa \rho(x) \left(1 + \frac{|x-y|}{\rho(x)}\right)^{k_0/(k_0+1)}.\]
Throughout the whole paper, we denote by C_L the L-constant
\begin{equation}
C_L = 8.9^{k_0} \kappa
\end{equation}
where k_0 and κ are defined as in Proposition 2.1.

Given 1 < q ≤ ∞, Following Dziubański and Zienkiewicz [16], a function a is called a \((H^1_L,q)\)-atom related to the ball \(B(x_0,r)\) if \(r \leq C_L \rho(x_0)\) and

(i) \(\text{supp } a \subset B(x_0,r),\)
(ii) \(\|a\|_{L^q} \leq |B(x_0,r)|^{1/q-1},\)
(iii) if \(r \leq \frac{1}{\kappa} \rho(x_0)\) then \(\int_{B(x_0,r)} a(x) \, dx = 0.\)

A function a is called a classical \((H^1_L,q)\)-atom related to the ball \(B = B(x_0, r)\) if it satisfies (i), (ii) and \(\int_{B(x_0, r)} a(x) \, dx = 0.\)

The following atomic characterization of \(H^1_L(\mathbb{R}^d)\) is due to [16].

Theorem 2.2 (see [16], Theorem 1.5). Let 1 < q ≤ ∞. A function f is in \(H^1_L(\mathbb{R}^d)\) if and only if it can be written as \(f = \sum_j \lambda_j a_j,\) where \(a_j\) are \((H^1_L,q)\)-atoms and \(\sum_j |\lambda_j| < \infty.\) Moreover,
\[\|f\|_{H^1_L} \approx \inf \left\{ \sum_j |\lambda_j| : f = \sum_j \lambda_j a_j \right\}.\]

Note that a classical \((H^1,q)\)-atom is not a \((H^1_L,q)\)-atom in general. In fact, there exists a constant \(C > 0\) such that if \(f\) is a classical \((H^1,q)\)-atom, then it can be written as \(f = \sum_{j=1}^n \lambda_j a_j,\) for some \(n \in \mathbb{Z}^+,\) where \(a_j\) are \((H^1_L,q)\)-atoms and \(\sum_{j=1}^n |\lambda_j| \leq C,\) see for example [47]. In this work, we need a variant of the definition of atoms for \(H^1_L(\mathbb{R}^d)\) which include classical \((H^1,q)\)-atoms and \((H^1_L,q)\)-atoms. This kind of atoms have been used in the work of Chang, Dafni and Stein, see [11], [13].
Definition 2.3. Given $1 < q \leq \infty$ and $\varepsilon > 0$. A function a is called a generalized (H^1_L, q, ε)-atom related to the ball $B(x_0, r)$ if

(i) $\text{supp} \ a \subset B(x_0, r),$

(ii) $\|a\|_{L^q} \leq |B(x_0, r)|^{1/q - 1},$

(iii) $\left| \int_{\mathbb{R}^d} a(x) \, dx \right| \leq \left(\frac{r}{\rho(x_0)} \right)^\varepsilon.$

The space $\mathbb{H}^{1,q,\varepsilon}_{L,at}(\mathbb{R}^d)$ is defined to be set of all functions f in $L^1(\mathbb{R}^d)$ which can be written as $f = \sum_{j=1}^{\infty} \lambda_j a_j$ where the a_j are generalized (H^1_L, q, ε)-atoms and the λ_j are complex numbers such that $\sum_{j=1}^{\infty} |\lambda_j| < \infty$. As usual, the norm on $\mathbb{H}^{1,q,\varepsilon}_{L,at}(\mathbb{R}^d)$ is defined by

$$\|f\|_{\mathbb{H}^{1,q,\varepsilon}_{L,at}} = \inf \left\{ \sum_{j=1}^{\infty} |\lambda_j| : f = \sum_{j=1}^{\infty} \lambda_j a_j \right\}.$$

The space $\mathbb{H}^{1,q,\varepsilon}_{L,fin}(\mathbb{R}^d)$ is defined to be set of all $f = \sum_{j=1}^{k} \lambda_j a_j$, where the a_j are generalized (H^1_L, q, ε)-atoms. Then, the norm of f in $\mathbb{H}^{1,q,\varepsilon}_{L,fin}(\mathbb{R}^d)$ is defined by

$$\|f\|_{\mathbb{H}^{1,q,\varepsilon}_{L,fin}} = \inf \left\{ \sum_{j=1}^{k} |\lambda_j| : f = \sum_{j=1}^{k} \lambda_j a_j \right\}.$$

Remark 2.4. Let $1 < q \leq \infty$ and $\varepsilon > 0$. Then, a classical (H^1, q)-atom is a generalized (H^1_L, q, ε)-atom related to the same ball, and a (H^1_L, q)-atom is C_L^ε times a generalized (H^1_L, q, ε)-atom related to the same ball.

Throughout the whole paper, we always use generalized (H^1_L, q, ε)-atoms except in the proof of Theorem 3.6. More precisely, in order to prove Theorem 3.6, we need to use (H^1_L, q)-atoms from Dziubański and Zienkiewicz (see above).

The following gives a characterization of $H^1_L(\mathbb{R}^n)$ in terms of generalized atoms.

Theorem 2.5. Let $1 < q \leq \infty$ and $\varepsilon > 0$. Then, $\mathbb{H}^{1,q,\varepsilon}_{L,at}(\mathbb{R}^d) = H^1_L(\mathbb{R}^d)$ and the norms are equivalent.

In order to prove Theorem 2.5, we need the following lemma.

Lemma 2.6 (see [31], Lemma 2). Let $V \in RH_{d/2}$. Then, there exists $\sigma_0 > 0$ depends only on L, such that for every $|y - z| < |x - y|/2$ and $t > 0$, we have

$$|T_t(x, y) - T_t(x, z)| \leq C \left(\frac{|y - z|}{\sqrt{t}} \right)^\sigma_0 t^{-d/2} e^{-|x - y|^2/t} \leq C \frac{|y - z|^{\sigma_0}}{|x - y|^{d + \sigma_0}}.$$

Proof of Theorem 2.5. As \mathcal{M}_L is a sublinear operator, by Remark 2.4 and Theorem 2.2, it is sufficient to show that

$$\|\mathcal{M}_L(a)\|_{L^1} \leq C$$

for all generalized (H^1_L, q, ε)-atom a related to the ball $B = B(x_0, r)$.

Indeed, from the L^q-boundedness of the classical Hardy–Littlewood maximal operator M, the estimate $M_L(a) \leq CM(a)$ and Hölder inequality,

$$
\|M_L(a)\|_{L^1(2B)} \leq C\|M(a)\|_{L^1(2B)} \leq C|2B|^{1/q'} \|M(a)\|_{L^q} \leq C,
$$

where $1/q' + 1/q = 1$. Let $x \notin 2B$ and $t > 0$, Lemma 2.6 and (3.5) of [16] give

$$
|T_t(a)(x)| = \left| \int_{\mathbb{R}^d} T_t(x, y) a(y) dy \right|
\leq \left| \int_{B} (T_t(x, y) - T_t(x, x_0)) a(y) dy \right| + |T_t(x, x_0)| \left| \int_{B} a(y) dy \right|
\leq C \frac{r^\sigma_0}{|x - x_0|^{d + \sigma_0}} + C \frac{r^\varepsilon}{|x - x_0|^{d + \varepsilon}}.
$$

Therefore,

$$
\|M_L(a)\|_{L^1((2B)^c)} = \sup_{t > 0} |T_t(a)| \leq C \frac{r^\sigma_0}{|x - x_0|^{d + \sigma_0}} + C \frac{r^\varepsilon}{|x - x_0|^{d + \varepsilon}} \leq C.
$$

Then, (2.5) follows from (2.6) and (2.7).

By Theorem 2.5, the following can be seen as a direct consequence of Proposition 3.2 of [47] and Remark 2.4.

Proposition 2.7. Let $1 < q < \infty$, $\varepsilon > 0$ and X be a Banach space. Suppose that $T: H_{L, q, \varepsilon}^1(\mathbb{R}^d) \to X$ is a sublinear operator with

$$
sup \{ \|Ta\|_X : a \text{ is a generalized } (H_{L, q, \varepsilon}^1) - \text{atom} \} < \infty.
$$

Then, T can be extended to a bounded sublinear operator \tilde{T} from $H_{L, q}^1(\mathbb{R}^d)$ into X. Moreover,

$$
\|\tilde{T}\|_{H_{L, q}^1 \to X} \leq C \sup \{ \|Ta\|_X : a \text{ is a generalized } (H_{L, q, \varepsilon}^1) - \text{atom} \}.
$$

Now, we turn to explain the new BMO type spaces introduced by Bongioanni, Harboure and Salinas in [7]. Here and in what follows $f_B := \frac{1}{|B|} \int_B f(x) \, dx$ and

$$
MO(f, B) := \frac{1}{|B|} \int_B |f(y) - f_B| \, dy.
$$

For $\theta > 0$, following [7], we denote by $\text{BMO}_{L, \theta}(\mathbb{R}^d)$ the set of all locally integrable functions f such that

$$
\|f\|_{\text{BMO}_{L, \theta}} = \sup_{B(x, r)} \left(\frac{1}{(1 + r/\rho(x))^\theta} \int_B |f(y) - f_B| \, dy \right) < \infty,
$$
and $\text{BMO}^{\log}_{L,\theta}(\mathbb{R}^d)$ the set of all locally integrable functions f such that
\[
\|f\|_{\text{BMO}^{\log}_{L,\theta}} = \sup_{B(x,r)} \left(\frac{\log \left(e + \rho(x)/r \right)}{1 + \rho(x)/r} \right)^\theta M\log \left(g, B(x,r) \right) < \infty.
\]

When $\theta = 0$, we write $\text{BMO}^{\log}_L(\mathbb{R}^d)$ instead of $\text{BMO}^{\log}_{L,0}(\mathbb{R}^d)$. We next define
\[
\text{BMO}_{L,\infty}(\mathbb{R}^d) = \bigcup_{\theta \geq 0} \text{BMO}_{L,\theta}(\mathbb{R}^d)
\]
and
\[
\text{BMO}^{\log}_{L,\infty}(\mathbb{R}^d) = \bigcup_{\theta \geq 0} \text{BMO}^{\log}_{L,\theta}(\mathbb{R}^d).
\]

Observe that $\text{BMO}_{L,0}(\mathbb{R}^d)$ is just the classical $\text{BMO}(\mathbb{R}^d)$ space. Moreover, for any $0 \leq \theta \leq \theta' \leq \infty$, we have
\[
\text{BMO}_{L,\theta}(\mathbb{R}^d) \subset \text{BMO}_{L,\theta'}(\mathbb{R}^d), \quad \text{BMO}^{\log}_{L,\theta}(\mathbb{R}^d) \subset \text{BMO}^{\log}_{L,\theta'}(\mathbb{R}^d)
\]
and
\[
\text{BMO}^{\log}_{L,\theta}(\mathbb{R}^d) = \text{BMO}_{L,\theta}(\mathbb{R}^d) \cap \text{BMO}^{\log}_{L,\infty}(\mathbb{R}^d).
\]

Remark 2.8. The inclusions in (2.9) are strict in general. In particular:

(i) The space $\text{BMO}_{L,\infty}(\mathbb{R}^d)$ is in general larger than the space $\text{BMO}(\mathbb{R}^d)$. Indeed, when $V(x) \equiv |x|^2$, it is easy to check that the functions $b_j(x) = |x_j|^2$, $j = 1, \ldots, d$, belong to $\text{BMO}_{L,\infty}(\mathbb{R}^d)$ but not to $\text{BMO}(\mathbb{R}^d)$.

(ii) The space $\text{BMO}^{\log}_{L,\infty}(\mathbb{R}^d)$ is in general larger than the space $\text{BMO}^{\log}_L(\mathbb{R}^d)$. Indeed, when $V(x) \equiv 1$, it is easy to check that the functions $b_j(x) = |x_j|$, $j = 1, \ldots, d$, belong to $\text{BMO}^{\log}_{L,\infty}(\mathbb{R}^d)$ but not to $\text{BMO}^{\log}_L(\mathbb{R}^d)$.

Next, let us recall the notation of Schrödinger–Calderón–Zygmund operators.

Let $\delta \in (0, 1]$. According to [33], a continuous function $K : \mathbb{R}^d \times \mathbb{R}^d \setminus \{(x, x) : x \in \mathbb{R}^d\} \to \mathbb{C}$ is said to be a (δ, L)-Calderón–Zygmund singular integral kernel if for each $N > 0$,
\[
|K(x, y)| \leq \frac{C(N)}{|x - y|^d} \left(1 + \frac{|x - y|}{\rho(x)} \right)^{-N}
\]
for all $x \neq y$, and
\[
|K(x, y) - K(x', y)| + |K(y, x) - K(y, x')| \leq C \frac{|x - x'|^\delta}{|x - y|^d + |x - y|^{d+1}}
\]
for all $2|x - x'| \leq |x - y|$.

As usual, we denote by $C^\infty_c(\mathbb{R}^d)$ the space of all C^∞-functions with compact support, by $\mathcal{S}(\mathbb{R}^d)$ the Schwartz space on \mathbb{R}^d.
Definition 2.9. A linear operator \(T : S(\mathbb{R}^d) \to S'(\mathbb{R}^d) \) is said to be a \((\delta, L)\)-Calderón–Zygmund operator if \(T \) can be extended to a bounded operator on \(L^2(\mathbb{R}^d) \) and if there exists a \((\delta, L)\)-Calderón–Zygmund singular integral kernel \(K \) such that for all \(f \in C_c^\infty(\mathbb{R}^d) \) and all \(x \notin \text{supp} \ f \), we have

\[
Tf(x) = \int_{\mathbb{R}^d} K(x, y) f(y) \, dy.
\]

An operator \(T \) is said to be a Schrödinger–Calderón–Zygmund operator associated with \(L \) (or \(L \)-Calderón–Zygmund operator) if it is a \((\delta, L)\)-Calderón–Zygmund operator for some \(\delta \in (0, 1) \). We say that \(T \) satisfies the condition \(T^* 1 = 0 \) if there are \(q \in (1, \infty] \) and \(\varepsilon > 0 \) so that \(\int_{\mathbb{R}^d} Ta(x) dx = 0 \) holds for every generalized \((H^1, q, \varepsilon)\)-atoms \(a \).

Remark 2.10.

(i) Using Proposition 2.1, inequality (2.11) is equivalent to

\[
|K(x, y)| \leq C(N) \left(1 + \frac{|x - y|}{\rho(y)}\right)^{-N}
\]

for all \(x \neq y \).

(ii) By Theorem 0.8 of [39] and Theorem 1.1 of [40], we see that the Riesz transforms \(R \) are the \(L\)-Calderón–Zygmund operators satisfying \(R_1^* 1 = 0 \) whenever \(V \in RH_d \).

(iii) If \(T \) is a \(L\)-Calderón–Zygmund operator then it is also a classical Calderón–Zygmund operator, and thus \(T \) is bounded on \(L^p(\mathbb{R}^d) \) for \(1 < p < \infty \) and bounded from \(L^1(\mathbb{R}^d) \) into \(L^{1, \infty}(\mathbb{R}^d) \).

3. Statement of the results

Recall that \(K_L \) is the set of all sublinear operators \(T \) bounded from \(H^1(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \) and that there are \(q \in (1, \infty] \) and \(\varepsilon > 0 \) such that

\[
\| (b - b_T) T a \|_{L^q} \leq C \| b \|_{\text{BMO}}
\]

for all \(b \in \text{BMO}(\mathbb{R}^d) \), any generalized \((H^1, q, \varepsilon)\)-atom \(a \) related to the ball \(B \), where \(C > 0 \) is a constant independent of \(b, a \).

3.1. Two decomposition theorems

Let \(b \) be a locally integrable function and \(T \in K_L \). As usual, the (sublinear) commutator \([b, T]\) of the operator \(T \) is defined by \([b, T]f(x) := T((b(x) - b(\cdot)) f(\cdot))(x)\).

Theorem 3.1 (Subbilinear decomposition). Let \(T \in K_L \). There exists a bounded subbilinear operator \(\mathfrak{R} = \mathfrak{R}_T : H^1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \to L^1(\mathbb{R}^d) \) such that for all \((f, b) \in H^1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)\), we have

\[
|T(\mathfrak{S}(f, b))| - \mathfrak{R}(f, b) \leq |[b, T]f| \leq \mathfrak{R}(f, b) + |T(\mathfrak{S}(f, b))|,
\]

where \(\mathfrak{S} \) is a bounded bilinear operator from \(H^1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \) which does not depend on \(T \).
Using Theorem 3.1, we obtain immediately the following result.

Proposition 3.2. Let \(T \in \mathcal{K}_L \) so that \(T \) is of weak type \((1,1)\). Then, the subbilinear operator \(\mathcal{T}(f,g) = [g,T](f) \) maps continuously \(H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \) into \(L^{1,\infty}(\mathbb{R}^d) \).

As the Riesz transforms \(R_j = \partial x_j L^{-1/2} \) are of weak type \((1,1)\) (see [30]), the following can be seen as a consequence of Proposition 3.2 (see also [32]).

Corollary 3.3 (see [32], Theorem 4.1). Let \(b \in \text{BMO}(\mathbb{R}^d) \). Then, the commutators \([b,R_j] \) are bounded from \(H^1_L(\mathbb{R}^d) \) into \(L^{1,\infty}(\mathbb{R}^d) \).

When \(T \) is linear and belongs to \(\mathcal{K}_L \), we obtain the bilinear decomposition for the linear commutator \([b,T] \) of \(f \), \([b,T](f) = bT(f) - T(bf) \), instead of the subbilinear decomposition as stated in Theorem 3.1.

Theorem 3.4 (Bilinear decomposition). Let \(T \) be a linear operator in \(\mathcal{K}_L \). Then, there exists a bounded bilinear operator \(\mathcal{R} = \mathcal{R}_T : H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \to L^1(\mathbb{R}^d) \) such that for all \((f,b)\in H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)\), we have
\[
[b,T](f) = \mathcal{R}(f,b) + T(\mathcal{S}(f,b)),
\]
where \(\mathcal{S} \) is as in Theorem 3.1.

3.2. Hardy estimates for linear commutators

Our first main result of this subsection is the following theorem.

Theorem 3.5. (i) Let \(b \in \text{BMO}_L^{log}(\mathbb{R}^d) \) and \(T \) be a \(L \)-Calderón–Zygmund operator satisfying \(T^*1 = 0 \). Then, the linear commutator \([b,T] \) is bounded on \(H^1_L(\mathbb{R}^d) \).

(ii) When \(V \in RH_d \), the converse holds. Namely, if \(b \in \text{BMO}(\mathbb{R}^d) \) and \([b,T] \) is bounded on \(H^1_L(\mathbb{R}^d) \) for every \(L \)-Calderón–Zygmund operator \(T \) satisfying \(T^*1 = 0 \), then \(b \in \text{BMO}_L^{log}(\mathbb{R}^d) \). Furthermore,
\[
\|b\|_{\text{BMO}_L^{log}} \approx \|b\|_{\text{BMO}} + \sum_{j=1}^{d} \| [b,R_j] \|_{H^1_L \to H^1_L}.
\]

Next result concerns the \(H^1_L \)-estimates for commutators of the Riesz transforms.

Theorem 3.6. Let \(b \in \text{BMO}_L,\infty(\mathbb{R}^d) \). Then, the commutators \([b,R_j], j = 1,\ldots,d, \) are bounded on \(H^1_L(\mathbb{R}^d) \) if and only if \(b \in \text{BMO}_L^{log}(\mathbb{R}^d) \). Furthermore, if \(b \in \text{BMO}_L^{log}(\mathbb{R}^d) \) for some \(\theta \geq 0 \), we have
\[
\|b\|_{\text{BMO}_L^{log}} \approx \|b\|_{\text{BMO}_L,\theta} + \sum_{j=1}^{d} \| [b,R_j] \|_{H^1_L \to H^1_L}.
\]

Remark that the above constants depend on \(\theta \).
Note that $\text{BMO}^{\log}_L(\mathbb{R}^d)$ is in general proper subset of $\text{BMO}^{\log}_{L,\infty}(\mathbb{R}^d)$ (see Remark 2.8). When $V \in RH_d$, although the Riesz transforms R_j are L-Calderón–Zygmund operators satisfying $R_j^*1 = 0$, Theorem 3.6 cannot be deduced from Theorem 3.5.

As a consequence of Theorem 3.6, we obtain the following interesting result.

Corollary 3.7. Let $b \in \text{BMO}(\mathbb{R}^d)$. Then, b belongs to $\text{LMO}(\mathbb{R}^d)$ if and only if the vector-valued commutator $[b, \nabla (-\Delta + 1)^{-1/2}]$ maps continuously $h^1(\mathbb{R}^d)$ into $h^1(\mathbb{R}^d, \mathbb{R}^d)$. Furthermore,

$$
\|b\|_{\text{LMO}} \approx \|b\|_{\text{BMO}} + \| [b, \nabla (-\Delta + 1)^{-1/2}] \|_{h^1(\mathbb{R}^d) \to h^1(\mathbb{R}^d, \mathbb{R}^d)}.
$$

Here $h^1(\mathbb{R}^d)$ is the local Hardy space of D. Goldberg (see [20]), and $\text{LMO}(\mathbb{R}^d)$ is the space of all locally integrable functions f such that

$$
\|f\|_{\text{LMO}} := \sup_{B(x,r)} \left(\log \left(e + \frac{1}{r} \right) \text{MO}(f, B(x,r)) \right) < \infty.
$$

It should be pointed out that LMO type spaces appear naturally when studying the boundedness of Hankel operators on the Hardy spaces $H^1(\mathbb{T}^d)$ and $H^1(\mathbb{B}^d)$ (where \mathbb{B}^d is the unit ball in \mathbb{C}^d and $\mathbb{T}^d = \partial \mathbb{B}^d$), characterizations of pointwise multipliers for BMO type spaces, endpoint estimates for commutators of singular integrals operators and their applications to PDEs, see for example [5], [9], [24], [25], [28], [36], [41], and [42].

4. Some fundamental operators and the class \mathcal{K}_L

The purpose of this section is to give some examples of fundamental operators related to L which are in the class \mathcal{K}_L.

4.1. The Schrödinger–Calderón–Zygmund operators

Proposition 4.1. Let T be any L-Calderón–Zygmund operator. Then, T belongs to the class \mathcal{K}_L.

Proposition 4.2. The Riesz transforms R_j are in the class \mathcal{K}_L.

The proof of Proposition 4.2 follows directly from Lemma 5.13 and the fact that the Riesz transforms R_j are bounded from $H^1_1(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$.

To prove Proposition 4.1, we need the following two lemmas.

Lemma 4.3. Let $1 \leq q < \infty$. Then, there exists a constant $C > 0$ such that for every ball B, $f \in \text{BMO}(\mathbb{R}^d)$ and $k \in \mathbb{Z}^+$,

$$
\left(\frac{1}{|2^k B|} \int_{2^k B} |f(y) - f_B|^q \, dy \right)^{1/q} \leq C \|f\|_{\text{BMO}}.
$$
The proof of Lemma 4.3 follows directly from the classical John–Nirenberg inequality. See also Lemma 6.6 below.

Lemma 4.4. Let $1 < q ≤ ∞$ and $ε > 0$. Assume that T is a $(δ, L)$-Calderón–Zygmund operator and a is a generalized $(H^1_q, q, ε)$-atom related to the ball $B = B(x_0, r)$. Then,

$$
\|Ta\|_{L^q(2^{k+1}B \setminus 2^kB)} \leq C2^{-k\delta_0}|2^kB|^{1/q-1}
$$

for all $k = 1, 2, \ldots$, where $δ_0 = \min\{ε, δ\}.

Proof. Let $x \in 2^{k+1}B \setminus 2^kB$, so that $|x - x_0| ≥ 2r$. Since T is a $(δ, L)$-Calderón–Zygmund operator, we get

$$
|Ta(x)| \leq \left| \int_B (K(x, y) - K(x, x_0))a(y)\,dy \right| + |K(x, x_0)| \left| \int_{\mathbb{R}^d} a(y)\,dy \right|
$$

$$
≤ C \int_B \frac{|y - x_0|^{δ}}{|x - x_0|^{d+δ}} |a(y)|\,dy + C \frac{1}{|x - x_0|^2} \left(1 + \frac{|x - x_0|}{\rho(x_0)}\right)^{−ε} \left(\frac{r}{\rho(x_0)}\right)^{ε}
$$

$$
≤ C \frac{r_δ}{|x - x_0|^{d+δ}} + C \frac{r^{ε}}{|x - x_0|^{d+ε}} \leq C \frac{r^{ε}}{|x - x_0|^{d+ε}}.
$$

Consequently,

$$
\|Ta\|_{L^q(2^{k+1}B \setminus 2^kB)} \leq C \frac{r^{δ_0}}{(2r)^{d+δ_0}} |2^{k+1}B|^{1/q} \leq C 2^{-k\delta_0}|2^kB|^{1/q-1}.
$$

Proof of Proposition 4.1. Assume that T is a $(δ, L)$-Calderón–Zygmund for some $δ ∈ (0, 1]$. Let us first verify that T is bounded from $H^1_q(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$. By Proposition 2.7, it is sufficient to show that

$$
\|Ta\|_{L^1} \leq C
$$

for all generalized $(H^1_q, 2, δ)$-atom a related to the ball B. Indeed, from the L^2-boundedness of T and Lemma 4.4, we obtain that

$$
\|Ta\|_{L^1} = \|Ta\|_{L^1(2B)} + \sum_{k=1}^\infty \|Ta\|_{L^1(2^{k+1}B \setminus 2^kB)}
$$

$$
≤ C |2B|^{1/2} \|T\|_{L^2 \to L^2} \|a\|_{L^2} + C \sum_{k=1}^\infty |2^{k+1}B|^{1/2} 2^{-kδ} |2^kB|^{-1/2} \leq C.
$$

Let us next establish that

$$
\|(f - f_B)Ta\|_{L^1} \leq C \|f\|_{BMO}
$$

for all $f \in BMO(\mathbb{R}^d)$, and for any generalized $(H^1_q, 2, δ)$-atom a related to the ball
Commutators of singular integral operators

\[B = B(x_0, r). \] Indeed, by Hölder’s inequality, Lemma 4.3 and Lemma 4.4, we get

\[
\| (f - f_B) T a \|_{L^1} \\
= \| (f - f_B) T a \|_{L^1(2B)} + \sum_{k \geq 1} \| (f - f_B) T a \|_{L^1(2^{k+1}B \setminus 2^kB)} \\
\leq \| (f - f_B) \chi_{2B} \|_{L^2} \| T \|_{L^2} \| L^2 \|_{L^2} \| a \|_{L^2} + \sum_{k \geq 1} \| f - f_B \|_{L^2(2^{k+1}B)} \| T a \|_{L^2(2^{k+1}B \setminus 2^kB)} \\
\leq C \| f \|_{BMO} + \sum_{k \geq 1} C(k + 1) \| f \|_{BMO} |2^{k+1}B|^{1/2} |2^{-k}B|^{-1/2} \leq C \| f \|_{BMO},
\]

which ends the proof.

4.2. The L-maximal operators

Recall that \(\{T_t\}_{t > 0} \) is heat semigroup generated by \(L \) and \(T_t(x, y) \) are their kernels. Namely,

\[
T_t f(x) = e^{-tL} f(x) = \int_{\mathbb{R}^d} T_t(x, y) f(y) dy, \quad f \in L^2(\mathbb{R}^d), \quad t > 0.
\]

Then the “heat” maximal operator is defined by

\[
M_L f(x) = \sup_{t > 0} |T_t f(x)|,
\]

and the “Poisson” maximal operator is defined by

\[
M_L^P f(x) = \sup_{t > 0} |P_t f(x)|,
\]

where

\[
P_t f(x) = e^{-t\sqrt{L}} f(x) = \frac{t}{2\sqrt{\pi}} \int_0^\infty \frac{e^{-t^2/(4u)}}{u^{3/2}} T_u f(x) \, du.
\]

Proposition 4.5. The “heat” maximal operator \(M_L \) is in the class \(K_L \).

Proposition 4.6. The “Poisson” maximal operator \(M_L^P \) is in the class \(K_L \).

Here we just give the proof of Proposition 4.5. For the one of Proposition 4.6, we leave the details to the interested reader.

Proof of Proposition 4.5. Obviously, \(M_L \) is bounded from \(H^1_L(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \).

Now, let us prove that

\[
\| (f - f_B) M_L(a) \|_{L^1} \leq C \| f \|_{BMO}
\]

for all \(f \in BMO(\mathbb{R}^d) \), any generalized \((H^1_L, 2, \sigma_0) \)-atom \(a \) related to the ball \(B = B(x_0, r) \), where the constant \(\sigma_0 > 0 \) is as in Lemma 2.6. Indeed, by the proof of Theorem 2.5, for every \(x \notin 2B \),

\[
M_L(a)(x) \leq C \frac{r^{\sigma_0}}{|x - x_0|^{d + \sigma_0}}.
\]
Therefore, using Lemma 4.3, the L^2-boundedness of the classical Hardy–Littlewood maximal operator \mathcal{M} and the estimate $\mathcal{M}_L(a) \leq CM(a)$, we obtain that
\[
\| (f - f_B) \mathcal{M}_L(a) \|_{L^1} \\
= \| (f - f_B) \mathcal{M}_L(a) \|_{L^1(2B)} + \| (f - f_B) \mathcal{M}_L(a) \|_{L^1((2B)^c)} \\
\leq C \| f - f_B \|_{L^2(2B)} \| \mathcal{M}(a) \|_{L^2} + C \int_{|x-x_0| \geq 2r} |f(x) - f_B(x_0, r)| \frac{r^{\sigma_0}}{|x-x_0|^{d+\sigma_0}} \, dx \\
\leq C \| f \|_{\text{BMO}},
\]

where we have used the following classical inequality:
\[
\int_{|x-x_0| \geq 2r} |f(x) - f_B(x_0, r)| \frac{r^{\sigma_0}}{|x-x_0|^{d+\sigma_0}} \, dx \leq C \| f \|_{\text{BMO}},
\]
which proof can be found in [17]. This completes the proof of Proposition 4.5. \hfill \Box

4.3. The L-square functions

Recall (see [15]) that the L-square functions g and G are defined by
\[
g(f)(x) = \left(\int_0^\infty \left| t \partial_t T_t(f)(x) \right|^2 \frac{dt}{t} \right)^{1/2}
\]
and
\[
G(f)(x) = \left(\int_0^\infty \int_{|x-y|<t} \left| t \partial_t T_t(f)(y) \right|^2 \frac{dy \, dt}{t^{d+1}} \right)^{1/2}.
\]

Proposition 4.7. The L-square function g is in the class K_L.

Proposition 4.8. The L-square function G is in the class K_L.

Here we just give the proof for Proposition 4.7. For the one of Proposition 4.8, we leave the details to the interested reader.

In order to prove Proposition 4.7, we need the following lemma.

Lemma 4.9. There exists a constant $C > 0$ such that

\[
| t \partial_t T_t(x, y + h) - t \partial_t T_t(x, y) | \leq C \left(\frac{|h|}{\sqrt{t}} \right)^\gamma t^{-\gamma/2} e^{-\frac{\gamma}{\tau} |x-y|^2/t},
\]

for all $|h| < |x-y|/2$, $0 < t$. Here and in the proof of Proposition 4.7, the constants $\delta, c \in (0, 1)$ are as in Proposition 4 of [15].

Proof. One only needs to consider the case $\sqrt{\tau} < |h| < |x-y|/2$. Otherwise, (4.1) follows directly from (b) in Proposition 4 of [15].

For $\sqrt{\tau} < |h| < |x-y|/2$. By (a) in Proposition 4 of [15], we get
\[
| t \partial_t T_t(x, y + h) - t \partial_t T_t(x, y) | \leq C t^{-\gamma/2} e^{-\frac{\gamma}{\tau} |x-y|^2/t} + C t^{-\gamma/2} e^{-c|x-y|^2/t} \\
\leq C \left(\frac{|h|}{\sqrt{t}} \right)^\delta t^{-\gamma/2} e^{-\frac{\gamma}{\tau} |x-y|^2/t}.
\]

\hfill \Box
Proof of Proposition 4.7. The \((H^1_2 - L^1)\) type boundedness of \(g\) is well-known, see for example [15], [22]. Let us now show that

\[
\| (f - f_B) g(a) \|_{L^1} \leq C \| f \|_{\text{BMO}}
\]

for all \(f \in \text{BMO}(\mathbb{R}^d)\), any generalized \((H^1_2, 2, \delta)\)-atom \(a\) related to the ball \(B = B(x_0, r)\). Indeed, it follows from Lemma 4.9 and \((a)\) in Proposition 4 of [15] that for every \(t > 0, x \notin 2B,\)

\[
| t \partial_1 T_1(a)(x) | = \int_B \left(t \partial_1 T_1(x, y) - t \partial_1 T_1(x, x_0) \right) a(y) dy + t \partial_1 T_1(x, x_0) \int_B a(y) dy \leq C \left(\frac{r}{\sqrt{t}} \right)^{\delta} t^{-d/2} e^{-\frac{x - x_0}{2r}^2/t} \| a \|_{L^1}
\]

\[
\quad + C t^{-d/2} e^{-\frac{x - x_0}{2r}^2/t} \left(1 + \frac{\sqrt{t}}{\rho(x)} + \frac{\sqrt{t}}{\rho(x_0)} \right)^{\delta} \left(\frac{r}{\rho(x_0)} \right)^{\delta}
\]

\[
\leq C \left(\frac{r}{\sqrt{t}} \right)^{\delta} t^{-d/2} e^{-\frac{x - x_0}{2r}^2/t}.
\]

Therefore, as \(0 < \delta < 1\), using the estimate \(e^{-\frac{x - x_0}{2r}^2/t} \leq C(c, d)(\frac{t}{|x - x_0|^2})^{d+2},\)

\[
g(a)(x) \leq C \left\{ \int_0^\infty \left(\frac{t}{l} \right)^{\delta} t^{-d} e^{-\frac{x - x_0}{2r}^2/t} \frac{dt}{l} \right\}^{1/2}
\]

\[
\quad \leq C \left\{ \int_0^{|x - x_0|^2} \left(\frac{t}{l} \right)^{\delta} t^{-d} \left(\frac{t}{|x - x_0|^2} \right)^{d+2} \frac{dt}{l} + \int_0^\infty \left(\frac{t}{l} \right)^{\delta} t^{-d} \frac{dt}{l} \right\}^{1/2}
\]

\[
\leq C \frac{r^\delta}{|x - x_0|^{d+\delta}}.
\]

Therefore, the \(L^2\)-boundedness of \(g\) and Lemma 4.3 yield

\[
\| (f - f_B) g(a) \|_{L^1} \leq \| (f - f_B) g(a) \|_{L^1(2B)} + \| (f - f_B) g(a) \|_{L^1((2B)^c)}
\]

\[
\leq \| f - f_B \|_{L^2(2B)} \| g(a) \|_{L^2} + C \int_{|x - x_0| \geq 2r} \left| f(x) - f_B(x_0, r) \right| \frac{r^\delta}{|x - x_0|^{d+\delta}} dx
\]

\[
\leq C \| f \|_{\text{BMO}},
\]

which ends the proof. \(\square\)

5. Proof of the main results

In this section, we fix a non-negative function \(\varphi \in \mathcal{S}(\mathbb{R}^d)\) with \(\text{supp} \ \varphi \subset B(0, 1)\) and \(\int_{\mathbb{R}^d} \varphi(x) dx = 1\). Then, we define the linear operator \(\mathcal{J}_f\) by

\[
\mathcal{J}_f(f) = \sum_{n,k} \left(\psi_{n,k} f - \varphi_{2^{-n/2}} * (\psi_{n,k} f) \right),
\]

where \(\psi_{n, k}, n \in \mathbb{Z}, k = 1, 2, \ldots\) is as in Lemma 2.5 of [16] (see also Lemma 6.2).

Remark 5.1. When \(V(x) \equiv 1\), we can define \(\mathcal{J}_f(f) = f - \varphi * f\).
Let us now consider the set \(E = \{0,1\}^d \setminus \{(0, \cdots, 0)\} \) and \(\{\psi^\sigma\}_{\sigma \in E} \) the wavelet with compact support as in Section 3 of [4] (see also Section 2 of [28]). Suppose that \(\psi^\sigma \) is supported in the cube \((1/2-c/2,1/2+c/2)^d\) for all \(\sigma \in E \). As it is classical, for \(\sigma \in E \) and \(I \) a dyadic cube of \(\mathbb{R}^d \) which may be written as the set of \(x \) such that \(2^j x - k \in (0, 1)^d \), we note
\[
\psi^\sigma_I(x) = 2^{dj/2} \psi^\sigma(2^j x - k).
\]
In the sequel, the letter \(I \) always refers to dyadic cubes. Moreover, we note \(k I \) the cube of same center dilated by the coefficient \(k \).

Remark 5.2. For every \(\sigma \in E \) and \(I \) a dyadic cube. Because of the assumption on the support of \(\psi^\sigma \), the function \(\psi^\sigma_I \) is supported in the cube \(cI \).

In [4] (see also [28]), Bonami et al. established the following.

Proposition 5.3. The bounded bilinear operator \(\Pi \), defined by
\[
\Pi(f,g) = \sum_I \sum_{\sigma \in E} \langle f, \psi^\sigma_I \rangle \langle g, \psi^\sigma_I \rangle (\psi^\sigma_I)^2,
\]
is bounded from \(H^1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \).

5.1. Proof of Theorem 3.1 and Theorem 3.4

In order to prove Theorem 3.1 and Theorem 3.4, we need the following key two lemmas, whose proofs will given in Section 6.

Lemma 5.4. The linear operator \(\delta \) is bounded from \(H^1_1(\mathbb{R}^d) \) into \(H^1(\mathbb{R}^d) \).

Lemma 5.5. Let \(T \in \mathcal{K}_L \). Then, the subbilinear operator
\[
\mathcal{U}(f,b) := [b,T](f - \delta(f))
\]
is bounded from \(H^1_1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \).

By Proposition 5.3 and Lemma 5.4, we obtain:

Proposition 5.6. The bilinear operator \(\mathcal{S}(f,g) := -\Pi(\delta(f),g) \) is bounded from \(H^1_1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \).

We recall (see [28]) that the class \(\mathcal{K} \) is the set of all sublinear operators \(T \) bounded from \(H^1(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \) so that for some \(q \in (1, \infty] \),
\[
\| (b - b_B) T a \|_{L^1} \leq C \| b \|_{\text{BMO}},
\]
for all \(b \in \text{BMO}(\mathbb{R}^d) \), any classical \((H^1,q) \)-atom \(a \) related to the ball \(B \), where \(C > 0 \) a constant independent of \(b, a \).

Remark 5.7. By Remark 2.4 and as \(H^1(\mathbb{R}^d) \subset H^1_1(\mathbb{R}^d) \), we obtain that \(\mathcal{K}_L \subset \mathcal{K} \), which allows to apply the two classical decomposition theorems (Theorem 3.1 and Theorem 3.2 of [28]). This is a key point in our proofs.
Proof of Theorem 3.1. As $T \in \mathcal{K}_L \subset \mathcal{K}$, it follows from Theorem 3.1 of [28] that there exists a bounded subbilnear operator $\mathcal{V} : H^1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \to L^1(\mathbb{R}^d)$ such that for all $(g, b) \in H^1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)$, we have

\begin{equation}
| T(-\Pi(g, b)) | - \mathcal{V}(g, b) \leq | [b, T](g) | \leq \mathcal{V}(g, b) + | T(-\Pi(g, b)) |. \tag{5.1}
\end{equation}

Let us now define the bilinear operator \mathfrak{R} by

$$
\mathfrak{R}(f, b) := | \mathcal{U}(f, b) | + \mathcal{V}(\mathcal{S}(f), b)
$$

for all $(f, b) \in H^1_1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)$, where \mathcal{U} is the subbilnear operator as in Lemma 5.5. Then, using the subbilnear decomposition (5.1) with $g = \mathcal{S}(f)$,

$$
| T(\mathcal{S}(f, b)) | - \mathfrak{R}(f, b) \leq | [b, T](f) | \leq | T(\mathcal{S}(f, b)) | + \mathfrak{R}(f, b),
$$

where the bounded bilinear operator $\mathcal{S} : H^1_1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \to L^1(\mathbb{R}^d)$ is given in Proposition 5.6.

Furthermore, by Lemma 5.5 and Lemma 5.4, we get

$$
\| \mathfrak{R}(f, b) \|_{L^1} \leq \| \mathcal{U}(f, b) \|_{L^1} + \| \mathcal{V}(\mathcal{S}(f), b) \|_{L^1} \leq C \| f \|_{H^1_1} \| b \|_{\text{BMO}} + C \| \mathcal{S}(f) \|_{H^1} \| b \|_{\text{BMO}} \leq C \| f \|_{H^1_1} \| b \|_{\text{BMO}},
$$

where we used the boundedness of \mathcal{V} on $H^1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$. This completes the proof. \hfill \Box

Proof of Theorem 3.4. The proof follows the same lines except that now, one deals with equalities instead of inequalities. Namely, as T is a linear operator in $\mathcal{K}_L \subset \mathcal{K}$, Theorem 3.2 of [28] yields that there exists a bounded bilinear operator $\mathcal{W} : H^1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \to L^1(\mathbb{R}^d)$ such that for every $(g, b) \in H^1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)$,

$$
[b, T](g) = \mathcal{W}(g, b) + T(-\Pi(g, b)).
$$

Therefore, for every $(f, b) \in H^1_1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)$,

$$
[b, T](f) = \mathfrak{R}(f, b) + T(\mathcal{S}(f, b)),
$$

where $\mathfrak{R}(f, b) := \mathcal{U}(f, b) + \mathcal{W}(\mathcal{S}(f), b)$ is a bounded bilinear operator from $H^1_1(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$. This completes the proof. \hfill \Box

5.2. Proof of Theorem 3.5 and Theorem 3.6

First, recall that $\text{VMO}_L(\mathbb{R}^d)$ is the closure of $C_c^\infty(\mathbb{R}^d)$ in $\text{BMO}_L(\mathbb{R}^d)$. Then, the following result due to Ky [29].

Theorem 5.8. The space $H^1_1(\mathbb{R}^d)$ is the dual of the space $\text{VMO}_L(\mathbb{R}^d)$.

In order to prove Theorem 3.5, we need the following key lemmas, whose proofs will be given in Section 6.
Lemma 5.9. Let \(1 \leq q < \infty \) and \(\theta \geq 0 \). Then, for every \(f \in \text{BMO}_{L, \theta}^{\log}(\mathbb{R}^d) \), \(B = B(x, r) \) and \(k \in \mathbb{Z}^+ \), we have

\[
\left(\frac{1}{|2^kB|} \int_{2^kB} |f(y) - f_B|^q \, dy \right)^{1/q} \leq Ck \frac{(1 + 2^k r)^{(k+1)\theta}}{\log \left(e + \left(\frac{2^k r}{\rho(x)} \right)^{k+1} \right)} \|f\|_{\text{BMO}_{L, \theta}^{\log}},
\]

where the constant \(k_0 \) is as in Proposition 2.1.

Lemma 5.10. Let \(1 < q < \infty \), \(\varepsilon > 0 \) and \(T \) be a \(L \)-Calderón–Zygmund operator. Then, the following two statements hold:

(i) If \(T^*1 = 0 \), then \(T \) is bounded from \(H^1_L(\mathbb{R}^d) \) into \(H^1(\mathbb{R}^d) \).

(ii) For every \(f, g \in \text{BMO}(\mathbb{R}^d) \), and for every generalized \((H^1_L, q, \varepsilon) \)-atom \(a \) related to the ball \(B \),

\[
\| (f - f_B)(g - g_B)Ta \|_{L^1} \leq C \|f\|_{\text{BMO}} \|g\|_{\text{BMO}}.
\]

Proof of Theorem 3.5. (i). Assume that \(T \) is a \((\delta, L)\)-Calderón–Zygmund operator. We claim that, by Lemma 5.10, it is sufficient to prove that

\[
\|(b - b_B)a\|_{H^1_L} \leq C \|b\|_{\text{BMO}_{L, \theta}^{\log}}
\]

and

\[
\|(b - b_B)Ta\|_{H^1_L} \leq C \|b\|_{\text{BMO}_{L, \theta}^{\log}}
\]

hold for every generalized \((H^1_L, 2, \delta) \)-atom \(a \) related to the ball \(B = B(x_0, r) \) with the constants independent of \(b, a \). Indeed, if (5.2) and (5.3) are true, then

\[
\| [b, T](a) \|_{H^1_L} \leq \| (b - b_B)Ta \|_{H^1_L} + C \|T((b - b_B)a)\|_{H^1} \\
\leq C \|b\|_{\text{BMO}_{L, \theta}^{\log}} + C \|T\|_{H^1_L \rightarrow H^1} \| (b - b_B)a \|_{H^1_L} \leq C \|b\|_{\text{BMO}_{L, \theta}^{\log}}.
\]

Therefore, Proposition 2.7 yields that \([b, T] \) is bounded on \(H^1_L(\mathbb{R}^d) \); moreover,

\[
\| [b, T] \|_{H^1_L \rightarrow H^1_L} \leq C,
\]

where the constant \(C \) is independent of \(b \).

The proof of (5.2) is similar to the one of (5.3) but uses an easier argument; we leave the details to the interested reader. Let us now establish (5.3). By Theorem 5.8, it is sufficient to show that

\[
\| \phi(b - b_B)Ta \|_{L^1} \leq C \|b\|_{\text{BMO}_{L, \theta}^{\log}} \|\phi\|_{\text{BMO}}
\]

for all \(\phi \in C_c^\infty(\mathbb{R}^d) \). Besides, from Lemma 5.10,

\[
\| (\phi - \phi_B)(b - b_B)Ta \|_{L^1} \leq C \|b\|_{\text{BMO}} \|\phi\|_{\text{BMO}} \leq C \|b\|_{\text{BMO}_{L, \theta}^{\log}} \|\phi\|_{\text{BMO}}.
\]

This together with Lemma 2 of [15] allow us to reduce (5.4) to showing that

\[
\log \left(e + \rho(x_0) \frac{r}{\rho(x)} \right) \| (b - b_B)Ta \|_{L^1} \leq C \|b\|_{\text{BMO}_{L, \theta}^{\log}}.
\]
Commutators of singular integral operators

Setting \(\varepsilon = \delta/2 \), it is easy to check that there exists a constant \(C = C(\varepsilon) > 0 \) such that

\[
\log(e + kt) \leq C k^\varepsilon \log(e + t)
\]

for all \(k \geq 2, t > 0 \). Consequently, for all \(k \geq 1 \),

\[
(5.6) \quad \log \left(e + \frac{\rho(x_0)}{r} \right) \leq C \cdot 2^{k\varepsilon} \log \left(e + \left(\frac{\rho(x_0)}{2^{k+1}r} \right)^{k_0+1} \right)
\]

Then, by Lemma 4.4 and Lemma 5.9, we get

\[
\log \left(e + \frac{\rho(x_0)}{r} \right) \| (b - b_B) Ta \|_{L^1} \\
= \log \left(e + \frac{\rho(x_0)}{r} \right) \| (b - b_B) Ta \|_{L^1(2B)} \\
+ \sum_{k \geq 1} \log \left(e + \frac{\rho(x_0)}{r} \right) \| (b - b_B) Ta \|_{L^1(2^k+1B \backslash 2^k B)} \\
\leq C \log \left(e + \left(\frac{\rho(x_0)}{2r} \right)^{k_0+1} \right) \| b - b_B \|_{L^2(2B)} \| Ta \|_{L^2} \\
+ C \sum_{k \geq 1} 2^{k\varepsilon} \log \left(e + \left(\frac{\rho(x_0)}{2^{k+1}r} \right)^{k_0+1} \right) \| b - b_B \|_{L^2(2^k+1B \backslash 2^k B)} \| Ta \|_{L^2(2^{k+1}B \backslash 2^k B)} \\
\leq C \| b \|_{BMO_{loc}^\varepsilon} \| a \|_{L^2} \\
+ C \sum_{k \geq 1} 2^{k\varepsilon (k+1)} \| b \|_{BMO_{loc}^\varepsilon} 2^{-k\delta} |2^k B|^{-1/2}
\]

where we used \(\delta = 2\varepsilon \). This ends the proof of (i).

(ii) By Remark 2.10, (ii) can be seen as a consequence of Theorem 3.6 that we are going to prove now.

Next, let us recall the following lemma due to Tang and Bi [44].

Lemma 5.11 (see [44], Lemma 3.1). Let \(V \in RH_d/2 \). Then, there exists \(c_0 \in (0, 1) \) such that for any positive number \(N \) and \(0 < h < |x - y|/16 \), we have

\[
|K_j(x, y)| \leq \frac{C(N)}{(1 + \frac{|x - y|}{\rho(y)})^N} \frac{1}{|x - y|^{d-1}} \left(\int_{B(x, |x - y|)} \frac{V(z)}{|x - z|^{d-1}} \, dz + \frac{1}{|x - y|} \right)
\]

and

\[
|K_j(x, y + h) - K_j(x, y)| \\
\leq \frac{C(N)}{(1 + \frac{|x - y|}{\rho(y)})^N} \frac{h^{c_0}}{|x - y|^{d+1} |x - y|^{d-1}} \left(\int_{B(x, |x - y|)} \frac{V(z)}{|x - z|^{d-1}} \, dz + \frac{1}{|x - y|} \right),
\]

where \(K_j(x, y), j = 1, \ldots, d, \) are the kernels of the Riesz transforms \(R_j \).
In order to prove Theorem 3.6, we need also the following two technical lemmas, whose proofs will be given in Section 6.

Lemma 5.12. Let \(1 < q \leq d/2 \) and \(c_0 \) be as in Lemma 5.11. Then, \(R_j(a) \) is \(C \) times a classical \((H^1, q, c_0)\)-molecule (e.g. [40]) for all generalized \((H^1, q, c_0)\)-atom \(a \) related to the ball \(B = B(x_0, r) \). Furthermore, for any \(N > 0 \) and \(k \geq 4 \), we have

\[
\| R_j(a) \|_{L^q(2^{k+1}B \setminus 2^kB)} \leq \frac{C(N)}{(1 + \frac{2^k}{N})^N} 2^{-k} |2^kB|^{1/q - 1},
\]

where \(C(N) > 0 \) depends only on \(N \).

Lemma 5.13. Let \(1 < q \leq d/2 \) and \(\theta \geq 0 \). Then, for every \(f \in \text{BMO}(\mathbb{R}^d) \), \(g \in \text{BMO}_{L, \theta}(\mathbb{R}^d) \) and \((H^1, q)\)-atom \(a \) related to the ball \(B = B(x_0, r) \), we have

\[
\| (g - g_B) R_j(a) \|_{L^1} \leq C \| g \|_{\text{BMO}_{L, \theta}}
\]

and

\[
\| (f - f_B)(g - g_B) R_j(a) \|_{L^1} \leq C \| f \|_{\text{BMO}} \| g \|_{\text{BMO}_{L, \theta}}.
\]

Proof of Theorem 3.6. Suppose that \(b \in \text{BMO}_{L, \infty}^{\log}(\mathbb{R}^d) \), i.e. \(b \in \text{BMO}_{L, \theta}^{\log}(\mathbb{R}^d) \) for some \(\theta \geq 0 \). By Proposition 3.2 of [47], in order to prove that \([b, R_j] \) are bounded on \(H^1_b(\mathbb{R}^d) \), it is sufficient to show that \(\| [b, R_j](a) \|_{H^1_b} \leq C \| b \|_{\text{BMO}_{L, \theta}^{\log}} \) for all \((H^1, d/2)\)-atom \(a \). Similarly to the proof of Theorem 3.5, it remains to show

\[
\| (b - b_B) a \|_{H^1_b} \leq C \| b \|_{\text{BMO}_{L, \theta}^{\log}}
\]

and

\[
\| (b - b_B) R_j(a) \|_{H^1_b} \leq C \| b \|_{\text{BMO}_{L, \theta}^{\log}}
\]

hold for every \((H^1, d/2)\)-atom \(a \) related to the ball \(B = B(x_0, r) \), where the constants \(C \) in (5.8) and (5.9) are independent of \(b, a \).

As before, we leave the proof of (5.8) to the interested reader.

Let us now establish (5.9). Similarly to the proof of Theorem 3.5, Lemma 5.13 allows to reduce (5.9) to showing that

\[
\log \left(e + \frac{\rho(x_0)}{r} \right) \| (b - b_B) R_j(a) \|_{L^1} \leq C \| b \|_{\text{BMO}_{L, \theta}^{\log}}.
\]

Setting \(\varepsilon = c_0/2 \), there is a constant \(C = C(\varepsilon) > 0 \) such that for all \(k \geq 1 \),

\[
\log \left(e + \frac{\rho(x_0)}{r} \right) \leq C 2^{k\varepsilon} \log \left(e + \left(\frac{\rho(x_0)}{2k+1} \right)^{k_0+1} \right).
\]
Note that \(r \leq C_L \rho(x_0) \) since \(a \) is a \((H^1_L, \theta/2)\)-atom related to the ball \(B(x_0, r) \). In (5.7) of Lemma 5.12, we choose \(N = (k_0 + 1)\theta \). Then, H"older inequality, (5.11) and Lemma 5.9 allow to conclude that

\[
\log \left(e + \frac{\rho(x_0)}{r} \right) \| (b - b_B) R_j(a) \|_{L^1} = \log \left(e + \frac{\rho(x_0)}{r} \right) \| (b - b_B) R_j(a) \|_{L^1(2^kB)} + \sum_{k \geq 4} \log \left(e + \frac{\rho(x_0)}{2^k r} \right) \| (b - b_B) R_j(a) \|_{L^1(2^{k+1}B)} \leq C \log \left(e + \left(\frac{\rho(x_0)}{2^{k_0+1} r} \right)^{k_0+1} \right) \| (b - b_B) \|_{L^{\frac{d}{d - 2} \theta}(2^k B)} \| R_j(a) \|_{L^{d/(d - 2)}(2^{k+1}B)} + C \sum_{k \geq 4} 2^{k \varepsilon} \| (b - b_B) \|_{L^{\frac{d}{d - 2} \theta}(2^k B)} \| R_j(a) \|_{L^{d/(d - 2)}(2^{k+1}B)} \leq C \| b \|_{\text{BMO}_{L, \theta}^g} + C \| b \|_{\text{BMO}_{L, \theta}^g} \sum_{k \geq 4} k 2^{-k \varepsilon} \]

where we used \(c_0 = 2\varepsilon \). This proves (5.10), and thus \([b, R_j]\) are bounded on \(H^1_L(\mathbb{R}^d) \).

Conversely, assume that \([b, R_j]\) are bounded on \(H^1_L(\mathbb{R}^d) \). Then, although \(b \) belongs to \(\text{BMO}_{L, \infty}(\mathbb{R}^d) \) from a duality argument and Theorem 2 of [7], we would also like to give a direct proof for completeness.

As \(b \in \text{BMO}_{L, \infty}(\mathbb{R}^d) \) by assumption, there exist \(\theta > 0 \) such that \(b \in \text{BMO}_{L, \theta}(\mathbb{R}^d) \).

For every \((H^1_L, \theta/2)\)-atom \(a \) related to some ball \(B = B(x_0, r) \). By Remark 2.4 and Lemma 5.13,

\[
\| R_j((b - b_B) a) \|_{L^1} \leq \| (b - b_B) R_j(a) \|_{L^1} + C \| [b, R_j](a) \|_{H^1_L} \leq C \| b \|_{\text{BMO}_{L, \theta}} + C \| [b, R_j] \|_{H^1_L \rightarrow H^1_L}
\]

hold for all \(j = 1, \ldots, d \). In addition, noting that \(r \leq C_L \rho(x_0) \) since \(a \) is a \((H^1_L, \theta/2)\)-atom related to some ball \(B = B(x_0, r) \), H"older inequality and Lemma 1 of [7] (see also Lemma 6.6 below) give

\[
\| (b - b_B) a \|_{L^1} \leq \| b - b_B \|_{L^{d/(d - 2)}} \| a \|_{L^{d/2}} \leq C \| b \|_{\text{BMO}_{L, \theta}}.
\]

By the characterization of \(H^1_L(\mathbb{R}^d) \) in terms of the Riesz transforms (see [16]), the above proves that \((b - b_B) a \in H^1_L(\mathbb{R}^d)\), moreover,

\[
(5.12) \quad \| (b - b_B) a \|_{H^1_L} \leq C \left(\| b \|_{\text{BMO}_{L, \theta}} + \sum_{j=1}^d \| [b, R_j] \|_{H^1_L \rightarrow H^1_L} \right)
\]

where the constant \(C > 0 \) is independent of \(b, a \).
Now, we prove that $b \in \text{BMO}^\log_{L,\theta}(\mathbb{R}^d)$. More precisely, the following:

\begin{equation}
\log\left(\frac{e + \rho(x_0)}{r}\right) \frac{\text{MO}(b, B(x_0, r))}{(1 + r/\rho(x_0))^p} \leq C\left(\|b\|_{\text{BMO}_{L,\theta}} + \sum_{j=1}^d \|b, R_j\|_{H^1_{L^2}}} \right)
\end{equation}

holds for any ball $B(x_0, r)$ in \mathbb{R}^d. In fact, we only need to establish (5.13) for $0 < r < \rho(x_0)/2$ since $b \in \text{BMO}_{L,\theta}(\mathbb{R}^d)$.

Indeed, in (5.12) we choose $B = B(x_0, r)$ and $a = (2|B|)^{-1}(f - f_B)\chi_B$, where $f = \text{sign}(b - b_B)$. Then, it is easy to see that a is a $(H^1_{L^2}, d/2)$-atom related to the ball B. We next consider

$$g_{x_0, r}(x) = \chi_{[0, r]}(|x - x_0|) \log\left(\frac{\rho(x_0)}{r}\right) + \chi_{(r, \rho(x_0))}(|x - x_0|) \log\left(\frac{\rho(x_0)}{|x - x_0|}\right).$$

Then, thanks to Lemma 2.5 of [33], one has $\|g_{x_0, r}\|_{\text{BMO}_{L^2}} \leq C$. Moreover, it is clear that $g_{x_0, r}(b - b_B)a \in L^1(\mathbb{R}^d)$. Consequently, (5.12) together with the fact that $\text{BMO}_{L^2}(\mathbb{R}^d)$ is the dual of $H^1_{L^2}(\mathbb{R}^d)$ allows us to conclude that

$$\begin{align*}
\log\left(\frac{e + \rho(x_0)}{r}\right) \frac{\text{MO}(b, B(x_0, r))}{(1 + r/\rho(x_0))^p} &\leq 3 \log\left(\frac{\rho(x_0)}{r}\right) \text{MO}(b, B(x_0, r)) \\
&= 6 \int_{\mathbb{R}^d} g_{x_0, r}(x) (b(x) - b_B) a(x) \, dx \\
&\leq 6 \|g_{x_0, r}\|_{\text{BMO}_{L^2}} \|b - b_B\|_{H^1_{L^2}} \\
&\leq C\left(\|b\|_{\text{BMO}_{L,\theta}} + \sum_{j=1}^d \|b, R_j\|_{H^1_{L^2}}} \right),
\end{align*}$$

where we used $r < \rho(x_0)/2$ and

$$\int_{\mathbb{R}^d} (b(x) - b_B) a(x) \, dx = \frac{1}{2|B(x_0, r)|} \int_{B(x_0, r)} |b(x) - b_{B(x_0, r)}| \, dx.$$

This ends the proof. \hfill \square

6. Proof of the key lemmas

First, let us recall some notations and results due to Dziubański and Zienkiewicz in [16]. These notations and results play an important role in our proofs.

Let $P(x) = (4\pi)^{-d/2} e^{-|x|^2/4}$ be the Gauss function. For $n \in \mathbb{Z}$, the space $h^1_n(\mathbb{R}^d)$ denotes the space of all integrable functions f such that

$$\mathcal{M}_n f(x) = \sup_{0 < t < 2^{-n}} \left| \int_{\mathbb{R}^d} p_t(x, y) f(y) \, dy \right| \in L^1(\mathbb{R}^d),$$

where the kernel p_t is given by $p_t(x, y) = (4\pi t)^{-d/2} e^{-|x-y|^2/4t}$. We equipped this space with the norm $\|f\|_{h^1_n} = \|\mathcal{M}_n f\|_{L^1}$. For convenience of the reader, we list here some lemmas used in our proofs.
Lemma 6.1 (see [16], Lemma 2.3). There exist a constant $C > 0$ and a collection of balls $B_{n,k} = B(x_{n,k}, 2^{-n/2})$, $n \in \mathbb{Z}, k = 1, 2, \ldots$, such that $x_{n,k} \in B_n$, $B_n \subset \bigcup_k B_{n,k}$, and

$$\text{card} \{ (n', k') : B(x_{n,k}, R 2^{-n/2}) \cap B(x_{n', k'}, R 2^{-n/2}) \neq \emptyset \} \leq R^C$$

for all n, k and $R \geq 2$.

Lemma 6.2 (see [16], Lemma 2.5). There are nonnegative C^∞-functions $\psi_{n,k}$, $n \in \mathbb{Z}, k = 1, 2, \ldots$, supported in the balls $B(x_{n,k}, 2^{1-n/2})$, such that

$$\sum_{n,k} \psi_{n,k} = 1 \quad \text{and} \quad \|\nabla \psi_{n,k}\|_{L^\infty} \leq C 2^{n/2}.$$

Lemma 6.3 (see (4.7) in [16]). For every $f \in H^1_{1,L} (\mathbb{R}^d)$, we have

$$\sum_{n,k} \|\psi_{n,k} f\|_{h_{n}^1} \leq C \|f\|_{H^1_{1,L}}.$$

To prove Lemma 5.4, we need the following.

Lemma 6.4. There exists a constant $C = C(\varphi, d) > 0$ such that

$$\|f - \varphi_{2^{-n/2}} * f\|_{H^1_{1,L}} \leq C \|f\|_{h_{n}^1}, \quad \text{for all } n \in \mathbb{Z}, f \in h_{n}^1(\mathbb{R}^d).$$

The proof of Lemma 6.4 can be found in [20]. In fact, in [20], Goldberg proved it just for $n = 0$; however, by dilations, it is easy to see that (6.1) holds for every $n \in \mathbb{Z}, f \in h_{n}^1(\mathbb{R}^d)$ with an uniform constant $C > 0$ depends only on φ and d.

Proof of Lemma 5.4. It follows from Lemma 6.4 and Lemma 6.3 that

$$\|\mathcal{D}(f)\|_{H^1_{1,L}} = \left\| \sum_{n,k} (\psi_{n,k} f - \varphi_{2^{-n/2}} * (\psi_{n,k} f)) \right\|_{H^1_{1,L}} \leq \sum_{n,k} \|\psi_{n,k} f - \varphi_{2^{-n/2}} * (\psi_{n,k} f)\|_{H^1_{1,L}} \leq C \sum_{n,k} \|\psi_{n,k} f\|_{h_{n}^1} \leq C \|f\|_{H^1_{1,L}}$$

for every $f \in H^1_{1,L}(\mathbb{R}^d)$. This completes the proof. \hfill \Box

For $1 < q \leq \infty$ and $n \in \mathbb{Z}$. Recall (see [16]) that a function a is said to be a (h_{n}^1, q)-atom related to the ball $B(x_0,r)$ if $r \leq 2^{1-n/2}$ and

(i) $\text{supp } a \subset B(x_0, r)$,

(ii) $\|a\|_{L^q} \leq |B(x_0, r)|^{1/q - 1}$,

(iii) if $r \leq 2^{-1-n/2}$ then $\int_{B(x_0, r)} a(x) \, dx = 0$.

In order to prove Lemma 5.5, we need the following lemma.
Lemma 6.5. Let $1 < q < \infty$, $n \in \mathbb{Z}$ and $x \in B_n$. Suppose that $f \in h^1_n(\mathbb{R}^d)$ with $\text{supp} f \subset B(x, 2^{1-n/2})$. Then, there are (H^1_L, q)-atoms a_j related to the balls $B(x_j, r_j)$ such that $B(x_j, r_j) \subset B(x, 2^{2-n/2})$ and

$$f = \sum_j \lambda_j a_j, \quad \sum_j |\lambda_j| \leq C \|f\|_{h^1_n}$$

with a positive constant C independent of n and f.

Proof. By Theorem 4.5 of [16], there are (h^1_n, q)-atoms a_j related to the balls $B(x_j, r_j)$ such that $B(x_j, r_j) \subset B(x, 2^{2-n/2})$ and

$$f = \sum_j \lambda_j a_j, \quad \sum_j |\lambda_j| \leq C \|f\|_{h^1_n}.$$

Now, let us establish that the a_j’s are (H^1_L, q)-atoms related to the balls $B(x_j, r_j)$.

Indeed, as $x_j \in B(x, 2^{2-n/2})$ and $x \in B_n$, Proposition 2.1 implies that $r_j \leq 2^{2-n/2} \leq C_L \rho(x_j)$, where C_L is as in (2.4). Moreover, if $r_j < \frac{1}{2} \rho(x_j)$, then Proposition 2.1 implies that $r_j \leq 2^{-1-n/2}$, and thus $\int_{B_j} a_j(x) \, dx = 0$ since a_j are (h^1_n, q)-atoms related to the balls $B(x_j, r_j)$. These prove that the a_j’s are (H^1_L, q)-atoms related to the balls $B(x_j, r_j)$. \qed

Proof of Lemma 5.5. As $T \in K_L$, there exist $q \in (1, \infty]$ and $\varepsilon > 0$ such that

$$(b - b_B) T a \|_{L^1} \leq C \|b\|_{\text{BMO}}$$

for all $b \in \text{BMO}(\mathbb{R}^d)$ and generalized (H^1_L, q, ε)-atom a related to the ball B.

From the fact that $H_{L,\text{fin}}^{1,q,\varepsilon}(\mathbb{R}^d)$ is dense in $H_{L,\text{fin}}^{1,q,\varepsilon}(\mathbb{R}^d) = H^1_L(\mathbb{R}^d)$ (see Theorem 2.5), we need only prove that

$$\|U(f, b)\|_{L^1} = \|b, T \| (f - S(f))\|_{L^1} \leq C \|f\|_{H^1_L} \|b\|_{\text{BMO}}$$

holds for every $(f, b) \in H_{L,\text{fin}}^{1,q,\varepsilon}(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)$.

For any $(n, k) \in \mathbb{Z} \times \mathbb{Z}^+$. As $x_{n,k} \in B_n$ and $\psi_{n,k} f \in h^1_n(\mathbb{R}^d)$, it follows from Lemma 6.5 and Remark 2.4 that there are generalized (H^1_L, q, ε)-atoms $a_{j}^{n,k}$ related to the balls $B(x_{j}^{n,k}, r_{j}^{n,k})$ such that $B(x_{j}^{n,k}, r_{j}^{n,k}) \subset B(x_{n,k}, 2^{2-n/2})$ and

$$\psi_{n,k} f = \sum_j \lambda_j^{n,k} a_j^{n,k}, \quad \sum_j |\lambda_j^{n,k}| \leq C \|\psi_{n,k} f\|_{h^1_n}$$

with a positive constant C independent of n, k and f.

Clearly, $\text{supp} \varphi_{2^{-n/2}} * a_j^{n,k} \subset B(x_{n,k}, 5.2^{-n/2})$ since $\text{supp} \varphi \subset B(0, 1)$ and $a_j^{n,k} \subset B(x_{n,k}, 2^{2-n/2})$; the following estimate holds:

$$\|\varphi_{2^{-n/2}} * a_j^{n,k}\|_{L^q} \leq \|\varphi_{2^{-n/2}}\|_{L^q} \|a_j^{n,k}\|_{L^1} \leq (2^{-n/2})^{d(1/q - 1)} \|\varphi\|_{L^q} \leq C \|B(x_{n,k}, 5.2^{-n/2})\|^{1/q - 1}.$$
Moreover, as \(x_{n,k} \in B_n \),
\[
\left| \int_{\mathbb{R}^d} \varphi_{2^{-n/2} \ast a_{j}^{n,k}} \, dx \right| \leq \| \varphi_{2^{-n/2}} \|_{L^1} \| a_{j}^{n,k} \|_{L^1} \leq C \left(\frac{5.2^{-n/2}}{\rho(x_{n,k})} \right)^{\varepsilon}.
\]
These prove that \(\varphi_{2^{-n/2} \ast a_{j}^{n,k}} \) is \(C \) times a generalized \((H^1, q, \varepsilon)\)-atom related to \(B(x_{n,k}, 5.2^{-n/2}) \). Consequently, \((6.2)\) yields
\[
\| (b - b_{B(x_{n,k}, 5.2^{-n/2})}) T(\varphi_{2^{-n/2} \ast a_{j}^{n,k}}) \|_{L^1} \leq C \| b \|_{\text{BMO}}.
\]
By an analogous argument, it is easy to check that
\[
(\varphi_{2^{-n/2} \ast a_{j}^{n,k}})(b - b_{B(x_{n,k}, 5.2^{-n/2})})
\]
is \(C \| b \|_{\text{BMO}} \) times a generalized \((H^1, \frac{d+1}{2}, \varepsilon)\)-atom related to \(B(x_{n,k}, 5.2^{-n/2}) \).
Hence, it follows from \((6.3)\) and \((6.4)\) that
\[
\| [b, T] (\varphi_{2^{-n/2} \ast (\psi_{n,k} f)}) \|_{L^1} \leq \| (b - b_{B(x_{n,k}, 5.2^{-n/2})}) T(\varphi_{2^{-n/2} \ast (\psi_{n,k} f)}) \|_{L^1} + \| T((b - b_{B(x_{n,k}, 5.2^{-n/2})}) (\varphi_{2^{-n/2} \ast (\psi_{n,k} f))) \|_{L^1}
\]
\[
\leq C \| \psi_{n,k} f \|_{h_n^1} \| b \|_{\text{BMO}},
\]
where we used the fact that \(T \) is bounded from \(H^1_{L_1, \text{fin}}(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \) since \(T \in K_L \).
On the other hand, by \(f \in H^1_{L_1, \text{fin}}(\mathbb{R}^d) \), there exists a ball \(B(0, R) \) such that \(\text{supp } f \subset B(0, R) \). As \(B(0, R) \) is a compact set, Lemma 6.1 allows to conclude that there is a finite set \(\Gamma_R \subset \mathbb{Z} \times \mathbb{Z}^+ \) such that for every \((n, k) \notin \Gamma_R,
\[
B(x_{n,k}, 2^{1-n/2}) \cap B(0, R) = \emptyset.
\]
It follows that there are \(N, K \in \mathbb{Z}^+ \) such that
\[
f = \sum_{n,k} \psi_{n,k} f = \sum_{n=-N}^{N} \sum_{k=1}^{K} \psi_{n,k} f.
\]
Therefore, \((6.5)\) and Lemma 6.3 yield
\[
\| \mathcal{U}(f, b) \|_{L^1} \leq \left\| \sum_{n=-N}^{N} \sum_{k=1}^{K} [b, T] (\varphi_{2^{-n/2} \ast (\psi_{n,k} f)}) \right\|_{L^1} \leq C \| b \|_{\text{BMO}} \sum_{n,k} \| \psi_{n,k} f \|_{h_n^1} \leq C \| f \|_{H^1_L} \| b \|_{\text{BMO}},
\]
which ends the proof.

Proof of Lemma 5.9. First, we claim that for every ball \(B_0 = B(x_0, r_0) \),
\[
\left(\frac{1}{|B_0|} \int_{B_0} |f(y) - f_{B_0}|^q \, dy \right)^{1/q} \leq C \left(\frac{1 + \frac{r_0}{\rho(x_0)}}{(\beta(x_0))^{k_0+1}} \right)^{r_0+1} \| f \|_{\text{BMO}^q_{r_0}}.
\]
Assume that (6.6) holds for a moment. Then,
\[
\left(\frac{1}{|2^k B|} \int_{2^k B} |f(y) - f_B|^q \, dy \right)^{1/q}
\leq \left(\frac{1}{|2^k B|} \int_{2^k B} |f(y) - f_{2^k B}|^q \, dy \right)^{1/q} + \sum_{j=0}^{k-1} |f_{2^{j+1} B} - f_{2^j B}|
\leq (1 + \frac{\rho(r_0)}{(2^j)^{k_0+1}})^\theta \|f\|_{\text{BMO}_L^\theta} + \sum_{j=0}^{k-1} (1 + \frac{\rho(r_0)}{(2^j)^{k_0+1}})^\theta \|f\|_{\text{BMO}_L^\theta}
\leq C \frac{1}{\log (\rho + (\frac{\rho(r_0)}{(2^j)^{k_0+1}}))} \|f\|_{\text{BMO}_L^\theta}.
\]

It remains to prove (6.6). Let us define the function \(h \) on \(\mathbb{R}^d \) as follows:
\[
h(x) = \begin{cases}
1, & x \in B_0, \\
\frac{2r_0 - |x - x_0|}{r_0}, & x \in 2B_0 \setminus B_0, \\
0, & x \notin 2B_0,
\end{cases}
\]
and notice that
\[
|h(x) - h(y)| \leq \frac{|x - y|}{r_0}.
\]

Setting \(\tilde{f} := f - f_{2B_0} \). By the classical John–Nirenberg inequality, there exists a constant \(C = C(d, q) > 0 \) such that
\[
\left(\frac{1}{|B_0|} \int_{B_0} |f(y) - f_{B_0}|^q \, dy \right)^{1/q} = \left(\frac{1}{|B_0|} \int_{B_0} |h(y) \tilde{f}(y) - (h \tilde{f})_{B_0}|^q \, dy \right)^{1/q}
\leq C \|h \tilde{f}\|_{\text{BMO}}.
\]

Therefore, the proof of the lemma is reduced to showing that
\[
\|h \tilde{f}\|_{\text{BMO}} \leq C \frac{(1 + r_0/\rho(x_0))^{(k_0+1)\theta}}{\log (\rho + (\rho(x_0)/r_0)^{k_0+1})} \|f\|_{\text{BMO}_L^\theta},
\]
namely, for every ball \(B = B(x, r) \),
\[
\frac{1}{|B|} \int_B |h(y) \tilde{f}(y) - (h \tilde{f})_B| \, dy \leq C \frac{(1 + r_0/\rho(x_0))^{(k_0+1)\theta}}{\log (\rho + (\rho(x_0)/r_0)^{k_0+1})} \|f\|_{\text{BMO}_L^\theta}.
\]

Now, let us focus on inequality (6.8). Noting that \(\text{supp} \, h \subset 2B_0 \), inequality (6.8) is obvious if \(B \cap 2B_0 = \emptyset \). Hence, we only consider the case \(B \cap 2B_0 \neq \emptyset \). Then, we have the following two cases:
The case $r > r_0$. The fact $B \cap 2B_0 \neq \emptyset$ implies that $2B_0 \subset 5B$, and thus

$$\frac{1}{|B|} \int_B |h(y)\tilde{f}(y) - (h\tilde{f})_B| \, dy \leq 2 \frac{1}{|B|} \int_B |h(y)\tilde{f}(y)| \, dy$$

$$\leq 2.5^d \frac{1}{|2B_0|} \int_{2B_0} |f(y) - f_{2B_0}| \, dy \leq C \left(\frac{1 + 2r_0/\rho(x_0)}{\log (e + \rho(x_0)/(2r_0))} \right)^{\theta} \|f\|_{\text{BMO}_L^{\infty}}$$

$$\leq C \left(\frac{1 + r_0/\rho(x_0)}{(k_0+1)\theta} \right) \|f\|_{\text{BMO}_L^{\infty}}.$$

The case $r \leq r_0$. Inequality (6.7) yields

$$\frac{1}{|B|} \int_B |h(y)\tilde{f}(y) - (h\tilde{f})_B| \, dy \leq 2 \frac{1}{|B|} \int_B |h(y)\tilde{f}(y) - h_B\tilde{f}_B| \, dy$$

$$\leq 2 \frac{1}{|B|} \int_B |h(y)(\tilde{f}(y) - \tilde{f}_B)| \, dy$$

$$+ 2 |\tilde{f}_B| \frac{1}{|B|} \int_B \frac{1}{|B|} \int_B (h(x) - h(y)) \, dy \, dx$$

$$\leq C \left(\frac{1 + r_0/\rho(x)}{\log (e + \rho(x)/r)} \right)^{\theta} \|f\|_{\text{BMO}_L^{\infty}}.$$

By $r \leq r_0$, $B = B(x, r) \cap B(x_0, r_0) \neq \emptyset$, Proposition 2.1 gives

$$\frac{r}{\rho(x)} \leq \frac{r_0}{\rho(x)} \leq \kappa \frac{r_0}{\rho(x)} \left(1 + \frac{|x - x_0|}{\rho(x)} \right)^{k_0} \leq C \left(1 + \frac{r_0}{\rho(x)} \right)^{k_0}. $$

Consequently,

$$\frac{1}{|B|} \int_B |f(y) - f_B| \, dy \leq \left(\frac{1 + r/\rho(x)}{\log (e + \rho(x)/r)} \right)^{\theta} \|f\|_{\text{BMO}_L^{\infty}}$$

$$\leq C \left(\frac{1 + r_0/\rho(x)}{(k_0+1)\theta} \right) \|f\|_{\text{BMO}_L^{\infty}},$$

and

$$\frac{1}{|B(x, 2^kr_0)|} \int_{B(x, 2^kr_0)} |f(y) - f_{B(x, 2^kr_0)}| \, dy \leq \left(\frac{1 + 2^d r_0/\rho(x)}{\log (e + \rho(x)/(2^d r_0))} \right)^{\theta} \|f\|_{\text{BMO}_L^{\infty}}$$

$$\leq C \left(\frac{1 + r_0/\rho(x)}{(k_0+1)\theta} \right) \|f\|_{\text{BMO}_L^{\infty}}.$$

Noting that, for every $k \in \mathbb{N}$ with $2^{k+1}r \leq 2^kr_0$,

$$|f_{2^{k+1}B} - f_{2^kB}| \leq 2^d \frac{1}{|2^{k+1}B|} \int_{2^{k+1}B} |f(y) - f_{2^{k+1}B}| \, dy$$

$$\leq C \left(\frac{1 + 2^d r_0/\rho(x)}{\log (e + \rho(x)/(2^d r_0))} \right)^{\theta} \|f\|_{\text{BMO}_L^{\infty}} \leq C \left(\frac{1 + r_0/\rho(x)}{(k_0+1)\theta} \right) \|f\|_{\text{BMO}_L^{\infty}};$$
Lemma 6.6. Let

\[|f_B(x,r)-f_{B(x,2^r r_0)}| \leq C \log(e + r_0/r) \frac{(1 + r_0/\rho(x_0))^{(k_0+1)\theta}}{\log (e + (\rho(x_0)/r_0)^{k_0+1})} \|f\|_{BMO_{L,\theta}}. \]

Then, the inclusion $2B_0 \subset B(x,2^3 r_0)$, together with the inequalities (6.9), (6.10), (6.11) and (6.12), yield

\[
\frac{1}{|B|} \int_B |h(y)f(y) - (h \tilde{f})_B| dy \leq 2 \frac{1}{|B|} \int_B |f(y) - f_B| dy
\]

\[
+ 4 \frac{r}{r_0} \left(|f_B(x,r) - f_{B(x,2^r r_0)}| + 4^d MO(f,B(x,2^r r_0)) \right)
\]

\[
\leq C \left(1 + \frac{r}{r_0} \frac{r_0}{r} \rho(x_0) \right) \frac{(1 + r_0/\rho(x_0))^{(k_0+1)\theta}}{\log (e + (\rho(x_0)/r_0)^{k_0+1})} \|f\|_{BMO_{L,\theta}}
\]

\[
\leq C \frac{(1 + r_0/\rho(x_0))^{(k_0+1)\theta}}{\log (e + (\rho(x_0)/r_0)^{k_0+1})} \|f\|_{BMO_{L,\theta}},
\]

where we used $\frac{1}{r_0} \log(e + \frac{r_0}{r}) \leq \sup_{t \leq 1} t \log(e + 1/t) < \infty$. This ends the proof. \(\square\)

By an analogous argument, we can also obtain the following, which was proved by Bongioanni et al. (see Lemma 1 of [7]) through another method.

Lemma 6.6. Let $1 \leq q < \infty$ and $\theta \geq 0$. Then, for every $f \in BMO_{L,\theta}(\mathbb{R}^d)$, $B = B(x,r)$ and $k \in \mathbb{Z}^+$, we have

\[
\left(\frac{1}{|2^k B|} \int_{2^k B} |f(y) - f_B|^q dy \right)^{1/q} \leq C k \left(1 + \frac{2^k r}{\rho(x)} \right)^{(k_0+1)\theta} \|f\|_{BMO_{L,\theta}}.
\]

Proof of Lemma 5.10. (i) Assume that T is a (δ,L)-Calderón–Zygmund operator for some $\delta \in (0,1]$. For every generalized $(H^1_L,2,\delta)$-atom a related to the ball B, as $T^*_1 = 0$, Lemma 4.4 implies that Ta is C times a classical $(H^1,2,\delta)$-molecule (see for example [40]) related to B, and thus $\|Ta\|_{H^1} \leq C$. Therefore, Proposition 2.7 yields T maps continuously $H^1_L(\mathbb{R}^d)$ into $H^1(\mathbb{R}^d)$.

(ii) By Lemma 4.3, Lemma 4.4 and Hölder inequality, we get

\[
\|f - f_B\|_{(g - g_B)T a}\|_{L^1} = \|f - f_B\|_{L^1(2B)} \|a\|_{L^1(2B)} + \sum_{k \geq 1} \|f - f_B\|_{L^{2^k}(2^k B)} \|a\|_{L^{2^k}(2^k B)}
\]

\[
\leq \|f - f_B\|_{L^{2^k}(2^k B)} \|g - g_B\|_{L^{2^k}(2^k B)} \|T(a)\|_{L^q} + \sum_{k \geq 1} \|f - f_B\|_{L^{2^k}(2^k B)} \|g - g_B\|_{L^{2^k}(2^k B)} \|T(a)\|_{L^{q}(2^k B, 1/q - 1)}
\]

\[
\leq C \|f\|_{BMO_{L,\theta}} \|g\|_{BMO} + \sum_{k \geq 1} C(k+1)^2 \|f\|_{BMO_{L,\theta}} \|g\|_{BMO} \|2^k B\|^{1/q - 1} \|2^k B\|^{1/q - 1}
\]

\[
\leq C \|f\|_{BMO_{L,\theta}} \|g\|_{BMO},
\]

where $1/q + 1/q' = 1$. \(\square\)
Commutators of singular integral operators

Proof of Lemma 5.12. It is well-known that the Riesz transforms \(R_j \) are bounded from \(H^1_\text{loc}(\mathbb{R}^d) \) into \(H^1(\mathbb{R}^d) \), in particular, one has \(\int_{\mathbb{R}^d} R_j(a)(x) \ dx = 0. \) Moreover, by the \(L^q \)-boundedness of \(R_j \) (see [39], Theorem 0.5) one has \(\| R_j(a) \|_{L^q} \leq C |B|^{1/q-1} \). Therefore, it is sufficient to verify (5.7). Thanks to Lemma 5.11, as \(a \) is a generalized \((H^1, \| \cdot \|_{C^0}) \)-atom related to the ball \(B \), for every \(x \in 2^{k+1}B \setminus 2^{k}B \),

\[
| R_j(a)(x) | \leq \left| \int_B (K_j(x,y) - K_j(x,x_0)) a(y) \ dy \right| + | K_j(x,x_0) | \left| \int_B a(y) \ dy \right|
\]

\[
\leq \int_B \frac{C(N)}{1 + |x - x_0|/\rho(x_0)} \left| y - x_0 \right|^c \frac{|x - x_0|^d}{|x - z|^d} \left(\int_B \frac{V(z)}{|x - z|^d} \ dz + \left(\frac{1}{|x - x_0|/\rho(x_0)} \right)^c \right) \left(\int \frac{V(z)}{|x - z|^d} \ dz + \frac{r}{|z|^d} \ dz \right) \ .
\]

(6.13)

Here and in what follows, the constants \(C(N) \) depend only on \(N \), but may change from line to line. Note that for every \(x \in 2^{k+1}B \setminus 2^{k}B \), \(B(x, |x - x_0|) \subset B(x, 2^{k+1}r) \subset B(x_0, 2^{k+2}r) \). The fact \(V \in RH_{d/2} \), \(d/2 \geq q > 1 \), and Hölder’s inequality yield

\[
\left\| \int \frac{V(z)}{|x - z|^d} \ dz \right\|_{L^q(2^{k+1}B \setminus 2^{k}B, dx)} \leq C (2^{k+1}r)^{1 - 2/d} \left\{ \int \left(\frac{|V(z)|^{d/2}}{|x - z|^d} \ dz \right)^{q/d} \ dx \right\}^{1/q}
\]

\[
\leq C (2^{k+1}r)^{1 - 2/d} \left(2^{k+1}B \setminus 2^{k}B \right) \left\{ \int \frac{|V(z)|^{d/2}}{|x - z|^d} \ dz \ dx \right\}^{2/d}
\]

\[
\leq C (2^{k+1}r)^{1 - 2/d} \int_{B(x_0, 2^{k+2}r)} V(z) \ dz.
\]

Combining (6.13), (6.14) and Lemma 1 of [21], we obtain that

\[
\left\| R_j(a) \right\|_{L^q(2^{k+1}B \setminus 2^{k}B)} \leq \frac{C(N)}{(1 + \frac{2^{k+1}r}{\rho(x_0)})^N} \left(\frac{r^c 2^{k+1}r |2^{k+1}B|^{1/q - 1}}{(2^{k}r)^{d+c_0-1}} \right) \left(\frac{1}{1 + \frac{2^{k+2}r}{\rho(x_0)}} \right)^N \int_{B(x_0, 2^{k+2}r)} V(z) \ dz + \frac{r}{2^{k}B} |2^{k+1}B|^{1/q}
\]

\[
\leq \frac{C(N)}{(1 + \frac{2^{k}r}{\rho(x_0)})^N} 2^{k+c_0} |2^{k}B|^{1/q - 1},
\]

where \(N_0 = \log_2 C_0 + 1 \) with \(C_0 \) the constant in (2.1). This completes the proof. \(\square \)
Proof of Lemma 5.13. Note that $r \leq C_L \rho(x_0)$ since a is a (H^1_L, q)-atom related to the ball $B = B(x_0, r)$; and a is C_L^∞ times a generalized (H^1_L, q, c_0)-atom related to the ball $B = B(x_0, r)$ (see Remark 2.4). In (5.7), we choose $N = (k_0 + 1)\theta$. Then, Hölder’s inequality and Lemma 6.6 give

$$\| (g - g_B) R_j(a) \|_{L^1} = \| (g - g_B) R_j(a) \|_{L^1(B(2^j \cdot B))} + \sum_{k=4}^{\infty} \| (g - g_B) R_j(a) \|_{L^1(B(2^{k+1} \cdot B \setminus 2^k B))}$$

$$\leq \| g - g_B \|_{L^{1/q'}(2^j B)} \| R_j \|_{L^{q}(2^j \cdot B \setminus B)} \| a \|_{L^q}$$

$$+ \sum_{k=4}^{\infty} \| g - g_B \|_{L^{1/q'}(2^{k+1} \cdot B \setminus 2^k B)} \| R_j(a) \|_{L^{q}(2^{k+1} \cdot B \setminus 2^k B)}$$

$$\leq C \| g \|_{BMO_{L,q}} + C \sum_{k=4}^{\infty} (k + 1) \| 2^{k+1} B \|^{1/q'} \left(1 + \frac{2^{k+1} B}{\rho(x)}\right)^{(k+1)/\theta}$$

$$\cdot \| g \|_{BMO_{L,q}} \frac{1}{(1 + \frac{2^{k+1} B}{\rho(x)})^{(k+1)/\theta}} \| 2^{k} B \|^{1/q-1}$$

$$\leq C \| g \|_{BMO_{L,q}},$$

where $1/q + 1/q' = 1$. Similarly, we also obtain that

$$\| (f - f_B) (g - g_B) R_j(a) \|_{L^1} = \| (f - f_B) (g - g_B) R_j(a) \|_{L^1(B(2^j B))}$$

$$+ \sum_{k=4}^{\infty} \| (f - f_B) (g - g_B) R_j(a) \|_{L^1(B(2^{k+1} \cdot B \setminus 2^k B))}$$

$$\leq \| f - f_B \|_{L^{1/q'}(2^j B)} \| g - g_B \|_{L^{1/q'}(2^j B)} \| R_j(a) \|_{L^q}$$

$$+ \sum_{k=4}^{\infty} \| f - f_B \|_{L^{1/q'}(2^{k+1} \cdot B \setminus 2^k B)} \| g - g_B \|_{L^{1/q'}(2^{k+1} \cdot B \setminus 2^k B)} \| R_j(a) \|_{L^q(2^{k+1} \cdot B \setminus 2^k B)}$$

$$\leq C \| f \|_{BMO} \| g \|_{BMO_{L,q}},$$

which ends the proof. \qed

7. Some applications

The purpose of this section is to give some applications of the decomposition theorems (Theorem 3.1 and Theorem 3.4). To be more precise, we give some subspaces of $H^1_L(\mathbb{R}^d)$, which do not necessarily depend on b and T, such that all commutators $[b, T]$, for $b \in BMO(\mathbb{R}^d)$ and $T \in K_L$, map continuously these spaces into $L^1(\mathbb{R}^d)$.

Especially, using Theorem 3.1 and Theorem 3.4, we find the largest subspace $H^1_{L,b}(\mathbb{R}^d)$ of $H^1_L(\mathbb{R}^d)$ so that all commutators of Schrödinger–Calderón–Zygmund operators and the Riesz transforms are bounded from $H^1_{L,b}(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$. Also, it allows to find all functions b in $BMO(\mathbb{R}^d)$ so that $H^1_{L,b}(\mathbb{R}^d) \equiv H^1_L(\mathbb{R}^d)$.
7.1. Atomic Hardy spaces related to $b \in \text{BMO}(\mathbb{R}^d)$

Definition 7.1. Let $1 < q \leq \infty$, $\varepsilon > 0$ and $b \in \text{BMO}(\mathbb{R}^d)$. A function a is called a $(H^1_{L,b}, q, \varepsilon)$-atom related to the ball $B = B(x_0, r)$ if a is a generalized (H^1_L, q, ε)-atom related to the same ball B and

$$
(7.1) \quad \left| \int_{\mathbb{R}^d} a(x) (b(x) - b_B) \, dx \right| \leq \left(\frac{r}{\rho(x_0)} \right)^\varepsilon.
$$

As usual, the space $H^{1,q,\varepsilon}_{L,b}(\mathbb{R}^d)$ is defined as $\mathbb{H}^{1,q,\varepsilon}_{L,\text{at}}(\mathbb{R}^d)$ with generalized (H^1_L, q, ε)-atoms replaced by $(H^1_{L,b}, q, \varepsilon)$-atoms.

Obviously, $H^{1,q,\varepsilon}_{L,b}(\mathbb{R}^d) \subset \mathbb{H}^{1,q,\varepsilon}_{L,\text{at}}(\mathbb{R}^d) \equiv H^1_b(\mathbb{R}^d)$ and the inclusion is continuous.

Theorem 7.2. Let $1 < q \leq \infty$, $\varepsilon > 0$, $b \in \text{BMO}(\mathbb{R}^d)$ and $T \in K_L$. Then, the commutator $[b, T]$ is bounded from $H^{1,q,\varepsilon}_{L,b}(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$.

Remark 7.3. The space $H^1_b(\mathbb{R}^d)$ which has been considered by Tung and Bi [44] is a strict subspace of $H^{1,q,\varepsilon}_{L,b}(\mathbb{R}^d)$ in general. As an example, let us take $1 < q \leq \infty$, $\varepsilon > 0$, $L = -\Delta + 1$, and b be a non-constant bounded function, then it is easy to check that the function $f = \chi_{B(0,1)}$ belongs to $H^{1,q,\varepsilon}_{L,b}(\mathbb{R}^d)$ but not to $H^1_b(\mathbb{R}^d)$. Thus, Theorem 7.2 can be seen as an improvement of the main result of [44].

We should also point out that the authors in [44] proved their main result (see [44], Theorem 3.1) by establishing that $[b, R_j]$ is bounded from $H^{1,q,\varepsilon}_{L,b}(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$ in general.

Proof of Theorem 7.2. Let a be a $(H^1_{L,b}, q, \varepsilon)$-atom related to the ball $B = B(x_0, r)$. We first prove that $(b - b_B) a$ is $C \|b\|_{\text{BMO}}$ times a generalized $(H^1_{L,b}, (\tilde{q} + 1)/2, \varepsilon)$-atom, where $\tilde{q} \in (1, \infty)$ will be defined later and the positive constant C is independent of b, a. Indeed, one has $\text{supp} (b - b_B) a \subset \text{supp} a \subset B$. In addition, from Hölder inequality and John–Nirenberg (classical) inequality,

$$
\| (b - b_B) a \|_{L^{(\tilde{q} + 1)/2}} \leq \| (b - b_B) \chi_B \|_{L^{\tilde{q}(\tilde{q} + 1)/(\tilde{q} - 1)}} \| a \|_{L^{\tilde{q}}} \leq C \|b\|_{\text{BMO}} \|B\|((\tilde{q} + 1)/(\tilde{q} - 1)),
$$

where $\tilde{q} = q$ if $1 < q < \infty$ and $\tilde{q} = 2$ if $q = \infty$. These together with (7.1) yield that $(b - b_B) a$ is $C \|b\|_{\text{BMO}}$ times a generalized $(H^1_{L,b}, (\tilde{q} + 1)/2, \varepsilon)$-atom, and thus $\|(b - b_B) a\|_{H^1_b} \leq C \|b\|_{\text{BMO}}$.

We now prove that $\mathcal{G}(a, b)$ belongs to $H^1_b(\mathbb{R}^d)$.

By Theorem 3.4, there exist, for $j = 1, \ldots, d$, bounded bilinear operators $\mathcal{R}_j: H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \to L^1(\mathbb{R}^d)$, such that

$$
[b, R_j](a) = \mathcal{R}_j(a, b) + R_j(\mathcal{G}(a, b)),
$$
since \(R_j \) is linear and belongs to \(\mathcal{K}_L \) (see Proposition 4.2). Consequently, for every \(j = 1, \ldots, d \), as \(R_j \in \mathcal{K}_L \),

\[
\| R_j(\mathcal{S}(a, b))\|_{L^1} = \| (b - bB)R_j(a) - R_j((b - bB)a) - \mathcal{R}_j(a, b)\|_{L^1},
\]

\[
\leq \| (b - bB)R_j(a)\|_{L^1} + \| R_j\|_{L^1}^{H_j^1} \| (b - bB)a\|_{H^1_{L^1}} + \| \mathcal{R}_j(a, b)\|_{L^1}
\]

\[
\leq C\| b\|_{\text{BMO}}.
\]

This together with Proposition 5.6 prove that \(\mathcal{S}(a, b) \in H^1_{L^1}(\mathbb{R}^d) \), and moreover that

(7.2) \[\| \mathcal{S}(a, b)\|_{H^1_{L^1}} \leq C\| b\|_{\text{BMO}}.\]

Now, for any \(f \in H^{1,q,\varepsilon}_{L^1, b}(\mathbb{R}^d) \), there exists an expansion \(f = \sum_{k=1}^{\infty} \lambda_k a_k \) where the \(a_k \) are \((H_{L^1, b}^{1,q,\varepsilon}) \)-atoms and \(\sum_{k=1}^{\infty} |\lambda_k| \leq 2\| f \|_{H^{1,q,\varepsilon}_{L^1, b}} \). Then, the sequence \(\{\sum_{k=1}^{n} \lambda_k a_k\}_{n \geq 1} \) converges to \(f \) in \(H^{1,q,\varepsilon}_{L^1, b}(\mathbb{R}^d) \) and thus in \(H^1_{L^1}(\mathbb{R}^d) \). Hence, Proposition 5.6 implies that the sequence \(\{\mathcal{S}(\sum_{k=1}^{n} \lambda_k a_k, b)\}_{n \geq 1} \) converges to \(\mathcal{S}(f, b) \) in \(L^1(\mathbb{R}^d) \). In addition, by (7.2),

\[
\| \mathcal{S}\left(\sum_{k=1}^{n} \lambda_k a_k, b\right)\|_{H^1_{L^1}} \leq \sum_{k=1}^{n} |\lambda_k| \| \mathcal{S}(a_k, b)\|_{H^1_{L^1}} \leq C\| f \|_{H^{1,q,\varepsilon}_{L^1, b}} \| b\|_{\text{BMO}}.
\]

We then use Theorem 3.1 and the weak-star convergence in \(H^1_{L^1}(\mathbb{R}^d) \) (see [29]) to conclude that

\[
\| [b, T](f)\|_{L^1} \leq \| \mathcal{R}_T(f, b)\|_{L^1} + \| T\|_{H^1_{L^1} \rightarrow L^1} \| \mathcal{S}(f, b)\|_{H^1_{L^1}}
\]

\[
\leq C\| f \|_{H^1_{L^1}} \| b\|_{\text{BMO}} + C\| f \|_{H^{1,q,\varepsilon}_{L^1, b}} \| b\|_{\text{BMO}} \leq C\| f \|_{H^{1,q,\varepsilon}_{L^1, b}} \| b\|_{\text{BMO}},
\]

which ends the proof.

\[\Box\]

7.2. The spaces \(\mathcal{H}^{1}_{L^1, b}(\mathbb{R}^d) \) related to \(b \in \text{BMO}(\mathbb{R}^d) \)

In this section, we find the largest subspace \(\mathcal{H}^{1}_{L^1, b}(\mathbb{R}^d) \) of \(H^1_{L^1}(\mathbb{R}^d) \) so that all commutators of Schrödinger–Calderón–Zygmund operators and the Riesz transforms are bounded from \(\mathcal{H}^{1}_{L^1, b}(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \). Also, we find all functions \(b \) in \(\text{BMO}(\mathbb{R}^d) \) so that \(\mathcal{H}^{1}_{L^1, b}(\mathbb{R}^d) = H^1_{L^1}(\mathbb{R}^d) \).

Definition 7.4. Let \(b \) be a non-constant BMO-function. The space \(\mathcal{H}^{1}_{L^1, b}(\mathbb{R}^d) \) consists of all \(f \) in \(H^1_{L^1}(\mathbb{R}^d) \) such that \([b, \mathcal{M}_{L^1}](f)(x) = \mathcal{M}_{L^1}(b(x)f(\cdot) - b(\cdot)f(\cdot))(x) \) belongs to \(L^1(\mathbb{R}^d) \). We equipped \(\mathcal{H}^{1}_{L^1, b}(\mathbb{R}^d) \) with the norm

\[
\| f \|_{\mathcal{H}^{1}_{L^1, b}} = \| f \|_{H^1_{L^1}} \| b\|_{\text{BMO}} + \| [b, \mathcal{M}_{L^1}](f)\|_{L^1}.
\]

Here, we just consider non-constant functions \(b \) in \(\text{BMO}(\mathbb{R}^d) \) since \([b, T] = 0 \) if \(b \) is a constant function.
Consequently, the following conditions are equivalent:

(i) For every $T \in \mathcal{K}_L$, the commutator $[b, T]$ is bounded from $H^1_{L,b}(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$.

(ii) Assume that \mathcal{X} is a subspace of $H^1_{L,b}(\mathbb{R}^d)$ such that all commutators of the Riesz transforms are bounded from \mathcal{X} into $L^1(\mathbb{R}^d)$. Then, $\mathcal{X} \subset H^1_{L,b}(\mathbb{R}^d)$.

(iii) $H^1_{L,b}(\mathbb{R}^d) \equiv H^1_L(\mathbb{R}^d)$ if and only if $b \in \text{BMO}^{bg}(\mathbb{R}^d)$.

To prove Theorem 7.5, we need the following lemma.

Lemma 7.6. Let b be a non-constant BMO-function and $f \in H^1_L(\mathbb{R}^d)$. Then, the following conditions are equivalent:

(i) $f \in H^1_{L,b}(\mathbb{R}^d)$.

(ii) $\mathcal{S}(f, b) \in H^1_L(\mathbb{R}^d)$.

(iii) $[b, R_j](f) \in L^1(\mathbb{R}^d)$ for all $j = 1, \ldots, d$.

Furthermore, if one of these conditions is satisfied, then

$$\|f\|_{H^1_{L,b}} = \|f\|_{H^1_L} \|b\|_{\text{BMO}} + \|[b, \mathcal{M}_L](f)\|_{L^1} \approx \|f\|_{H^1_L} \|b\|_{\text{BMO}} + \|\mathcal{S}(f, b)\|_{H^1_L} \approx \|f\|_{H^1_L} \|b\|_{\text{BMO}} + \sum_{j=1}^d \|[b, R_j](f)\|_{L^1},$$

where the constants are independent of b and f.

Proof. (i) \iff (ii). As $\mathcal{M}_L \in \mathcal{K}_L$ (see Proposition 4.5), by Theorem 3.1, there is a bounded subbilinear operator $\mathcal{R} : H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \to L^1(\mathbb{R}^d)$ such that

$$\mathcal{M}_L(\mathcal{S}(f, b)) - \mathcal{R}(f, b) \leq |[b, \mathcal{M}_L](f)| \leq \mathcal{M}_L(\mathcal{S}(f, b)) + \mathcal{R}(f, b).$$

Consequently, $[b, \mathcal{M}_L](f) \in L^1(\mathbb{R}^d)$ if and only if $\mathcal{S}(f, b) \in H^1_L(\mathbb{R}^d)$; moreover,

$$\|f\|_{H^1_{L,b}} \approx \|f\|_{H^1_L} \|b\|_{\text{BMO}} + \|\mathcal{S}(f, b)\|_{H^1_L}.$$

(ii) \iff (iii). As the Riesz transforms R_j are in \mathcal{K}_L (see Proposition 4.2), by Theorem 3.4, there are d bounded subbilinear operator $\mathcal{R}_j : H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \to L^1(\mathbb{R}^d)$, $j = 1, \ldots, d$, such that

$$[b, R_j](f) = \mathcal{R}_j(f, b) + R_j(\mathcal{S}(f, b)).$$

Therefore, $\mathcal{S}(f, b) \in H^1_L(\mathbb{R}^d)$ if and only if $[b, R_j](f) \in L^1(\mathbb{R}^d)$ for all $j = 1, \ldots, d$; moreover,

$$\|f\|_{H^1_L} \|b\|_{\text{BMO}} + \|\mathcal{S}(f, b)\|_{H^1_L} \approx \|f\|_{H^1_L} \|b\|_{\text{BMO}} + \sum_{j=1}^d \|[b, R_j](f)\|_{L^1}. \quad \square$$
Proof of Theorem 7.5. By Theorem 3.1, there is a bounded sublinear operator
\(\mathcal{R}_T : H^1_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \to L^1(\mathbb{R}^d) \) such that
\[
|T(\mathcal{G}(f, b)) - \mathcal{R}_T(f, b)| \leq |[b, T](f)| \leq |T(\mathcal{G}(f, b))| + \mathcal{R}_T(f, b).
\]
Applying Lemma 7.6 gives for every bounded from \(H^1_L(\mathbb{R}^d) \)
Definition 7.7.
\[
\text{Let } \mathcal{S} \text{ be a } H^1_L(\mathbb{R}^d) \text{ atom related to the ball } B = B(x_0, r). \text{ If } a \subseteq B, \text{ then }
\|a\|_{L^2} \leq (\log (e + \frac{\|a\|_{L^2}}{\|a\|_{L^2}}))^\alpha |B|^{-1/2},
\]
(iii) \[\int_{\mathbb{R}^d} a(x) \, dx = 0.\]

As usual, the space \(H^1_{L, \alpha}^{(\log)}(\mathbb{R}^d) \) is defined as \(H^1_{L, \alpha}^{(\log)} \) with generalized \(H^1_{L, q, \epsilon} \)-atoms replaced by \(H^1_{L, \alpha}^{(\log)} \)-atoms.

Clearly, \(H^1_{L, \alpha}^{(\log)}(\mathbb{R}^d) \) is just \(H^1(\mathbb{R}^d) \) for all \(\alpha \leq \alpha' \). It should be pointed out that when \(L = -\Delta + 1 \) and \(\alpha \geq 0 \), then \(H^1_{L, \alpha}^{(\log)}(\mathbb{R}^d) \) is just the space of all distributions \(f \) such that
\[
\int_{\mathbb{R}^d} \frac{\mathfrak{M}f(x)/\lambda}{(\log (e + \mathfrak{M}f(x)/\lambda))^{\alpha}} \, dx < \infty
\]
for some \(\lambda > 0 \). Moreover (see [27] for the details),
\[
\|f\|_{H^1_{L, \alpha}^{(\log)}} \approx \inf \left\{ \lambda > 0 : \int_{\mathbb{R}^d} \frac{\mathfrak{M}f(x)/\lambda}{(\log (e + \mathfrak{M}f(x)/\lambda))^{\alpha}} \, dx \leq 1 \right\}.
\]

Theorem 7.8. For every \(T \in \mathcal{B}_L \) and \(b \in \text{BMO}(\mathbb{R}^d) \), the commutator \([b, T]\) is bounded from \(H^1_{L, \alpha}^{(\log)}(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \).

Proof. Let \(a \) be a \(H^1_{L, \alpha}^{(\log)} \)-atom related to the ball \(B = B(x_0, r) \). Let us first prove that \((b - b_B) a \in H^1_L(\mathbb{R}^d) \). As \(H^1_L(\mathbb{R}^d) \) is the dual of \(\text{VMO}_L(\mathbb{R}^d) \) (see Theorem 5.8), it is sufficient to show that for every \(g \in C^\infty_0(\mathbb{R}^d) \),
\[
\| (b - b_B) a g \|_{L^1} \leq C \| b \|_{\text{BMO}} \| g \|_{\text{BMO}_L}.
\]
Indeed, using the estimate $|g_B| \leq C \log(e + \rho(x_0)/r) \|g\|_{\text{BMO}}$ (see Lemma 2 of [15]), the H"older inequality and the classical John–Nirenberg inequality give
\[
\|(b - b_B)a\|_{L^1} \leq \|(g - g_B)(b - b_B)a\|_{L^1} + |g_B| \|(b - b_B)a\|_{L^1} \\
\leq \|(g - g_B)\chi_B\|_{L^1} \|(b - b_B)\chi_B\|_{L^4} \|a\|_{L^2} \\
+ C \log\left(e + \frac{\rho(x_0)}{r}\right) \|g\|_{\text{BMO}} \|(b - b_B)\chi_B\|_{L^2} \|a\|_{L^2} \\
\leq C \|b\|_{\text{BMO}} \|g\|_{\text{BMO}},
\]
which proves that $(b - b_B)a \in H^1_L(\mathbb{R}^d)$, moreover, $\|(b - b_B)a\|_{H^1_L} \leq C \|b\|_{\text{BMO}}.$

Similarly to the proof of Theorem 7.2, we also obtain that
\[
\|\mathfrak{S}(f, b)\|_{H^1_L} \leq C \|f\|_{H^m_{L^{-1}}} \|b\|_{\text{BMO}}
\]
for all $f \in H^m_{L^{-1}}(\mathbb{R}^d)$. Therefore, Theorem 3.1 allows to conclude that
\[
\|[b, T](f)\|_{L^1} \leq C \|f\|_{H^m_{L^{-1}}} \|b\|_{\text{BMO}},
\]
which ends the proof. \qed

As a consequence of the proof of Theorem 7.8, we obtain the following result.

Proposition 7.9. Let $T \in \mathcal{K}_L$. Then, $\mathcal{T}(f, b) := [b, T](f)$ is a bounded subbilinear operator from $H^m_{L^{-1}}(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d)$ into $L^1(\mathbb{R}^d)$.

7.4. The Hardy–Sobolev space $H^{1,1}_L(\mathbb{R}^d)$

Following Hofmann et al. [23], we say that f belongs to the (inhomogeneous) Hardy–Sobolev $H^{1,1}_L(\mathbb{R}^d)$ if $f, \partial_{x_1} f, \ldots, \partial_{x_d} f \in H^1_L(\mathbb{R}^d)$. Then, the norm on $H^{1,1}_L(\mathbb{R}^d)$ is defined by
\[
\|f\|_{H^{1,1}_L} = \|f\|_{H^1_L} + \sum_{j=1}^d \|\partial_{x_j} f\|_{H^1_L}.
\]

It should be pointed out that the authors in [23] proved that the space $H^{1,1}_L(\mathbb{R}^d)$ is just the classical (inhomogeneous) Hardy–Sobolev $H^{1,1}(\mathbb{R}^d)$ (see for example [1]), and can be identified with the (inhomogeneous) Triebel–Lizorkin space $F^{1,2}_1(\mathbb{R}^d)$ (see [26]). More precisely, f belongs to $H^{1,1}_L(\mathbb{R}^d)$ if and only if
\[
\mathcal{W}_\psi(f) = \left\{ \sum_{I} \sum_{\sigma \in \mathcal{E}} \left| \langle f, \psi_\sigma^I \rangle \right|^2 (1 + |I|^{-1/d})^2 |I|^{-1} \chi_I \right\}^{1/2} \in L^1(\mathbb{R}^d),
\]

moreover,
\[
\|f\|_{H^{1,1}_L} \approx \|\mathcal{W}_\psi(f)\|_{L^1}.
\]

(7.3)

Here $\{\psi_\sigma\}_{\sigma \in \mathcal{E}}$ is the wavelet as in Section 4.
Theorem 7.10. Let \(L = -\Delta + 1 \). Then, for every \(T \in K_L \) and \(b \in \text{BMO}(\mathbb{R}^d) \), the commutator \([b,T]\) is bounded from \(H^{1,1}_L(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \).

Remark 7.11. When \(L = -\Delta + 1 \), we can define \(\delta(f) = f - \varphi \ast f \) instead of \(\delta(f) = \sum_{n,k} (\psi_{n,k} f - \varphi_{2^{-n/2}} \ast (\psi_{n,k} f)) \) as in Section 5. In other words, the bilinear operator \(\Theta \) in Theorem 3.1 and Theorem 3.4 can be defined as \(\Theta(f, g) = -\Pi(f - \varphi \ast f, g) \). As \(\delta(f) = f - \varphi \ast f \), it is easy to see that

\[
\partial_{x_j} \delta(f) = \delta(\partial_{x_j} f).
\]

Here and in what follows, for any dyadic ball \(Q = Q(y, r) := \{ x \in \mathbb{R}^d : -r \leq x_j - y_j < r \text{ for all } j = 1, \ldots, d \} \), we denote by \(B_Q \) the ball

\[
B_Q := \{ x \in \mathbb{R}^d : |x - y| < 2\sqrt{dr} \}.
\]

To prove Theorem 7.10, we need the following lemma.

Lemma 7.12. Let \(L = -\Delta + 1 \). Then, the bilinear operator \(\Pi \) maps continuously \(H^{1,1}(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \) into \(H^1_L(\mathbb{R}^d) \).

Proof. Note that \(\rho(x) = 1 \) for all \(x \in \mathbb{R}^d \) since \(V(x) \equiv 1 \). We first claim that there exists a constant \(C > 0 \) such that

\[
(7.4) \quad \| (1 + |I|^{-1/d})^{-1}(\psi_I^2) \|_{H^1_L} \leq C
\]

for all dyadic \(I = Q(x_0, r) \) and \(\sigma \in \mathcal{E} \). Indeed, it follows from Remark 5.2 that \(\text{supp} (1 + |I|^{-1/d})^{-1}(\psi_I^2) \subset I \subset cB_I \), and it is clear that \(\| (1 + |I|^{-1/d})^{-1}(\psi_I^2) \|_{L^\infty} \leq |I|^{-1}\|\psi\|_{L^\infty} \leq C|cB_I|^{-1} \). In addition,

\[
\left| \int_{\mathbb{R}^d} (1 + |I|^{-1/d})^{-1}(\psi_I^2(x))^2 \ dx \right| = (1 + |I|^{-1/d})^{-1} \leq C \frac{r}{\rho(x_0)}.
\]

Hence, \((1 + |I|^{-1/d})^{-1}(\psi_I^2) \) is \(C \) times a generalized \((H^1_L, \infty, 1) \)-atom related to the ball \(cB_I \), and thus (7.4) holds.

Now, for every \((f, g) \in H^{1,1}(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \), (7.4) implies that

\[
\| \Pi(f, g) \|_{H^1_L} = \left\| \sum_I \sum_{\sigma \in \mathcal{E}} \langle f, \psi_I^2 \rangle \langle g, \psi_I^2 \rangle (\psi_I^2)^2 \right\|_{H^1_L} \leq C \sum_I \sum_{\sigma \in \mathcal{E}} |\langle f, \psi_I^2 \rangle| (1 + |I|^{-1/d}) \|g, \psi_I^2\| \leq C \|\mathcal{W}_0(f)\|_{L^1} \|g\|_{\text{BMO}} \leq C \|f\|_{H^{1,1}} \|g\|_{\text{BMO}},
\]

where we have used the fact that \(\text{BMO}(\mathbb{R}^d) \equiv \dot{F}^{0, 2}_{\infty}(\mathbb{R}^d) \) is the dual of \(H^1(\mathbb{R}^d) \equiv \dot{F}_1^{0, 2}(\mathbb{R}^d) \), we refer the reader to [18] for more details.

Proof of Theorem 7.10. Let \((f, b) \in H^{1,1}_L(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \). Thanks to Lemma 7.12, Remark 7.11 and Lemma 5.4, we get

\[
\| \Theta(f, g) \|_{H^1_L} \leq C \|\delta(f)\|_{H^{1,1}_L} \|b\|_{\text{BMO}} \leq C \|f\|_{H^{1,1}_L} \|b\|_{\text{BMO}}.
\]
Then we use Theorem 3.1 to conclude that
\[
\| [b, T](f) \|_{L^1} \leq \| R_T(f, b) \|_{L^1} + \| T \|_{H^1 \to L^1} \| \mathcal{S}(f, b) \|_{H^1} \leq C \| f \|_{H^1} \| b \|_{\text{BMO}},
\]
which ends the proof.

As a consequence of the proof of Theorem 7.10, we obtain the following result.

Proposition 7.13. Let \(L = -\Delta + 1 \) and \(T \in \mathcal{K}_L \). Then, \(\Sigma(f, b) := [b, T](f) \) is a bounded sublinear operator from \(H^1_{L^{-1}}(\mathbb{R}^d) \times \text{BMO}(\mathbb{R}^d) \) into \(L^1(\mathbb{R}^d) \).

References

Received December 21, 2013.

Luong Dang Ky: Department of Mathematics, University of Quy Nhon, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Viet Nam.

E-mail: dangky@math.cnrs.fr